This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjlem17 , (general version of the former prtlem14 ). (Contributed by Peter Mazsa, 10-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem14 | |- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjALTV5 | |- ( Disj R <-> ( A. x e. dom R A. y e. dom R ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) /\ Rel R ) ) |
|
| 2 | 1 | simplbi | |- ( Disj R -> A. x e. dom R A. y e. dom R ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) |
| 3 | rsp2 | |- ( A. x e. dom R A. y e. dom R ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) -> ( ( x e. dom R /\ y e. dom R ) -> ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) ) |
|
| 4 | 2 3 | syl | |- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) ) |
| 5 | eceq1 | |- ( x = y -> [ x ] R = [ y ] R ) |
|
| 6 | 5 | a1d | |- ( x = y -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) |
| 7 | elin | |- ( A e. ( [ x ] R i^i [ y ] R ) <-> ( A e. [ x ] R /\ A e. [ y ] R ) ) |
|
| 8 | nel02 | |- ( ( [ x ] R i^i [ y ] R ) = (/) -> -. A e. ( [ x ] R i^i [ y ] R ) ) |
|
| 9 | 8 | pm2.21d | |- ( ( [ x ] R i^i [ y ] R ) = (/) -> ( A e. ( [ x ] R i^i [ y ] R ) -> [ x ] R = [ y ] R ) ) |
| 10 | 7 9 | biimtrrid | |- ( ( [ x ] R i^i [ y ] R ) = (/) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) |
| 11 | 6 10 | jaoi | |- ( ( x = y \/ ( [ x ] R i^i [ y ] R ) = (/) ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) |
| 12 | 4 11 | syl6 | |- ( Disj R -> ( ( x e. dom R /\ y e. dom R ) -> ( ( A e. [ x ] R /\ A e. [ y ] R ) -> [ x ] R = [ y ] R ) ) ) |