This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a collection of index unions of sets A ( a , b ) for a e. V and b e. W to be disjoint. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjiund.1 | ⊢ ( 𝑎 = 𝑐 → 𝐴 = 𝐶 ) | |
| disjiund.2 | ⊢ ( 𝑏 = 𝑑 → 𝐶 = 𝐷 ) | ||
| disjiund.3 | ⊢ ( 𝑎 = 𝑐 → 𝑊 = 𝑋 ) | ||
| disjiund.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐷 ) → 𝑎 = 𝑐 ) | ||
| Assertion | disjiund | ⊢ ( 𝜑 → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjiund.1 | ⊢ ( 𝑎 = 𝑐 → 𝐴 = 𝐶 ) | |
| 2 | disjiund.2 | ⊢ ( 𝑏 = 𝑑 → 𝐶 = 𝐷 ) | |
| 3 | disjiund.3 | ⊢ ( 𝑎 = 𝑐 → 𝑊 = 𝑋 ) | |
| 4 | disjiund.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐷 ) → 𝑎 = 𝑐 ) | |
| 5 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 ↔ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) | |
| 6 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ↔ ∃ 𝑏 ∈ 𝑋 𝑥 ∈ 𝐶 ) | |
| 7 | 2 | eleq2d | ⊢ ( 𝑏 = 𝑑 → ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ 𝐷 ) ) |
| 8 | 7 | cbvrexvw | ⊢ ( ∃ 𝑏 ∈ 𝑋 𝑥 ∈ 𝐶 ↔ ∃ 𝑑 ∈ 𝑋 𝑥 ∈ 𝐷 ) |
| 9 | 4 | 3exp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) ) |
| 10 | 9 | rexlimdvw | ⊢ ( 𝜑 → ( ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) |
| 12 | 11 | rexlimdvw | ⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( ∃ 𝑑 ∈ 𝑋 𝑥 ∈ 𝐷 → 𝑎 = 𝑐 ) ) |
| 13 | 8 12 | biimtrid | ⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝑋 𝑥 ∈ 𝐶 → 𝑎 = 𝑐 ) ) |
| 14 | 6 13 | biimtrid | ⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 → 𝑎 = 𝑐 ) ) |
| 15 | 14 | con3d | ⊢ ( ( 𝜑 ∧ ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 ) → ( ¬ 𝑎 = 𝑐 → ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) ) |
| 16 | 15 | impancom | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( ∃ 𝑏 ∈ 𝑊 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) ) |
| 17 | 5 16 | biimtrid | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 → ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) ) |
| 18 | 17 | ralrimiv | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ∀ 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) |
| 19 | disj | ⊢ ( ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ ∪ 𝑏 ∈ 𝑊 𝐴 ¬ 𝑥 ∈ ∪ 𝑏 ∈ 𝑋 𝐶 ) | |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( ¬ 𝑎 = 𝑐 → ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
| 22 | 21 | orrd | ⊢ ( 𝜑 → ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
| 23 | 22 | a1d | ⊢ ( 𝜑 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) ) |
| 24 | 23 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑉 ∀ 𝑐 ∈ 𝑉 ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
| 25 | 3 1 | disjiunb | ⊢ ( Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴 ↔ ∀ 𝑎 ∈ 𝑉 ∀ 𝑐 ∈ 𝑉 ( 𝑎 = 𝑐 ∨ ( ∪ 𝑏 ∈ 𝑊 𝐴 ∩ ∪ 𝑏 ∈ 𝑋 𝐶 ) = ∅ ) ) |
| 26 | 24 25 | sylibr | ⊢ ( 𝜑 → Disj 𝑎 ∈ 𝑉 ∪ 𝑏 ∈ 𝑊 𝐴 ) |