This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a collection of index unions of sets A ( a , b ) for a e. V and b e. W to be disjoint. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjiund.1 | |- ( a = c -> A = C ) |
|
| disjiund.2 | |- ( b = d -> C = D ) |
||
| disjiund.3 | |- ( a = c -> W = X ) |
||
| disjiund.4 | |- ( ( ph /\ x e. A /\ x e. D ) -> a = c ) |
||
| Assertion | disjiund | |- ( ph -> Disj_ a e. V U_ b e. W A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjiund.1 | |- ( a = c -> A = C ) |
|
| 2 | disjiund.2 | |- ( b = d -> C = D ) |
|
| 3 | disjiund.3 | |- ( a = c -> W = X ) |
|
| 4 | disjiund.4 | |- ( ( ph /\ x e. A /\ x e. D ) -> a = c ) |
|
| 5 | eliun | |- ( x e. U_ b e. W A <-> E. b e. W x e. A ) |
|
| 6 | eliun | |- ( x e. U_ b e. X C <-> E. b e. X x e. C ) |
|
| 7 | 2 | eleq2d | |- ( b = d -> ( x e. C <-> x e. D ) ) |
| 8 | 7 | cbvrexvw | |- ( E. b e. X x e. C <-> E. d e. X x e. D ) |
| 9 | 4 | 3exp | |- ( ph -> ( x e. A -> ( x e. D -> a = c ) ) ) |
| 10 | 9 | rexlimdvw | |- ( ph -> ( E. b e. W x e. A -> ( x e. D -> a = c ) ) ) |
| 11 | 10 | imp | |- ( ( ph /\ E. b e. W x e. A ) -> ( x e. D -> a = c ) ) |
| 12 | 11 | rexlimdvw | |- ( ( ph /\ E. b e. W x e. A ) -> ( E. d e. X x e. D -> a = c ) ) |
| 13 | 8 12 | biimtrid | |- ( ( ph /\ E. b e. W x e. A ) -> ( E. b e. X x e. C -> a = c ) ) |
| 14 | 6 13 | biimtrid | |- ( ( ph /\ E. b e. W x e. A ) -> ( x e. U_ b e. X C -> a = c ) ) |
| 15 | 14 | con3d | |- ( ( ph /\ E. b e. W x e. A ) -> ( -. a = c -> -. x e. U_ b e. X C ) ) |
| 16 | 15 | impancom | |- ( ( ph /\ -. a = c ) -> ( E. b e. W x e. A -> -. x e. U_ b e. X C ) ) |
| 17 | 5 16 | biimtrid | |- ( ( ph /\ -. a = c ) -> ( x e. U_ b e. W A -> -. x e. U_ b e. X C ) ) |
| 18 | 17 | ralrimiv | |- ( ( ph /\ -. a = c ) -> A. x e. U_ b e. W A -. x e. U_ b e. X C ) |
| 19 | disj | |- ( ( U_ b e. W A i^i U_ b e. X C ) = (/) <-> A. x e. U_ b e. W A -. x e. U_ b e. X C ) |
|
| 20 | 18 19 | sylibr | |- ( ( ph /\ -. a = c ) -> ( U_ b e. W A i^i U_ b e. X C ) = (/) ) |
| 21 | 20 | ex | |- ( ph -> ( -. a = c -> ( U_ b e. W A i^i U_ b e. X C ) = (/) ) ) |
| 22 | 21 | orrd | |- ( ph -> ( a = c \/ ( U_ b e. W A i^i U_ b e. X C ) = (/) ) ) |
| 23 | 22 | a1d | |- ( ph -> ( ( a e. V /\ c e. V ) -> ( a = c \/ ( U_ b e. W A i^i U_ b e. X C ) = (/) ) ) ) |
| 24 | 23 | ralrimivv | |- ( ph -> A. a e. V A. c e. V ( a = c \/ ( U_ b e. W A i^i U_ b e. X C ) = (/) ) ) |
| 25 | 3 1 | disjiunb | |- ( Disj_ a e. V U_ b e. W A <-> A. a e. V A. c e. V ( a = c \/ ( U_ b e. W A i^i U_ b e. X C ) = (/) ) ) |
| 26 | 24 25 | sylibr | |- ( ph -> Disj_ a e. V U_ b e. W A ) |