This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
disji
Metamath Proof Explorer
Description: Property of a disjoint collection: if B ( X ) = C and
B ( Y ) = D have a common element Z , then X = Y .
(Contributed by Mario Carneiro , 14-Nov-2016)
Ref
Expression
Hypotheses
disji.1
⊢ x = X → B = C
disji.2
⊢ x = Y → B = D
Assertion
disji
⊢ Disj x ∈ A B ∧ X ∈ A ∧ Y ∈ A ∧ Z ∈ C ∧ Z ∈ D → X = Y
Proof
Step
Hyp
Ref
Expression
1
disji.1
⊢ x = X → B = C
2
disji.2
⊢ x = Y → B = D
3
inelcm
⊢ Z ∈ C ∧ Z ∈ D → C ∩ D ≠ ∅
4
1 2
disji2
⊢ Disj x ∈ A B ∧ X ∈ A ∧ Y ∈ A ∧ X ≠ Y → C ∩ D = ∅
5
4
3expia
⊢ Disj x ∈ A B ∧ X ∈ A ∧ Y ∈ A → X ≠ Y → C ∩ D = ∅
6
5
necon1d
⊢ Disj x ∈ A B ∧ X ∈ A ∧ Y ∈ A → C ∩ D ≠ ∅ → X = Y
7
6
3impia
⊢ Disj x ∈ A B ∧ X ∈ A ∧ Y ∈ A ∧ C ∩ D ≠ ∅ → X = Y
8
3 7
syl3an3
⊢ Disj x ∈ A B ∧ X ∈ A ∧ Y ∈ A ∧ Z ∈ C ∧ Z ∈ D → X = Y