This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a disjoint collection: if B ( X ) = C and B ( Y ) = D have a common element Z , then X = Y . (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disji.1 | |- ( x = X -> B = C ) |
|
| disji.2 | |- ( x = Y -> B = D ) |
||
| Assertion | disji | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( Z e. C /\ Z e. D ) ) -> X = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disji.1 | |- ( x = X -> B = C ) |
|
| 2 | disji.2 | |- ( x = Y -> B = D ) |
|
| 3 | inelcm | |- ( ( Z e. C /\ Z e. D ) -> ( C i^i D ) =/= (/) ) |
|
| 4 | 1 2 | disji2 | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ X =/= Y ) -> ( C i^i D ) = (/) ) |
| 5 | 4 | 3expia | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X =/= Y -> ( C i^i D ) = (/) ) ) |
| 6 | 5 | necon1d | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( ( C i^i D ) =/= (/) -> X = Y ) ) |
| 7 | 6 | 3impia | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( C i^i D ) =/= (/) ) -> X = Y ) |
| 8 | 3 7 | syl3an3 | |- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( Z e. C /\ Z e. D ) ) -> X = Y ) |