This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007) (Revised by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | discld | |- ( A e. V -> ( Clsd ` ~P A ) = ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( A \ x ) C_ A |
|
| 2 | elpw2g | |- ( A e. V -> ( ( A \ x ) e. ~P A <-> ( A \ x ) C_ A ) ) |
|
| 3 | 1 2 | mpbiri | |- ( A e. V -> ( A \ x ) e. ~P A ) |
| 4 | distop | |- ( A e. V -> ~P A e. Top ) |
|
| 5 | unipw | |- U. ~P A = A |
|
| 6 | 5 | eqcomi | |- A = U. ~P A |
| 7 | 6 | iscld | |- ( ~P A e. Top -> ( x e. ( Clsd ` ~P A ) <-> ( x C_ A /\ ( A \ x ) e. ~P A ) ) ) |
| 8 | 4 7 | syl | |- ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> ( x C_ A /\ ( A \ x ) e. ~P A ) ) ) |
| 9 | 3 8 | mpbiran2d | |- ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> x C_ A ) ) |
| 10 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 11 | 9 10 | bitr4di | |- ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> x e. ~P A ) ) |
| 12 | 11 | eqrdv | |- ( A e. V -> ( Clsd ` ~P A ) = ~P A ) |