This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnexi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ||
| 2 | snex | ||
| 3 | unexg | ||
| 4 | 1 2 3 | sylancl | |
| 5 | difsnid | ||
| 6 | 5 | eqcomd | |
| 7 | 6 | eleq1d | |
| 8 | 7 | adantr | |
| 9 | 4 8 | mpbird | |
| 10 | 9 | ex | |
| 11 | difsn | ||
| 12 | 11 | eleq1d | |
| 13 | 12 | biimpd | |
| 14 | 10 13 | pm2.61i |