This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difex2 | |- ( B e. C -> ( A e. _V <-> ( A \ B ) e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg | |- ( A e. _V -> ( A \ B ) e. _V ) |
|
| 2 | ssun2 | |- A C_ ( B u. A ) |
|
| 3 | uncom | |- ( ( A \ B ) u. B ) = ( B u. ( A \ B ) ) |
|
| 4 | undif2 | |- ( B u. ( A \ B ) ) = ( B u. A ) |
|
| 5 | 3 4 | eqtr2i | |- ( B u. A ) = ( ( A \ B ) u. B ) |
| 6 | 2 5 | sseqtri | |- A C_ ( ( A \ B ) u. B ) |
| 7 | unexg | |- ( ( ( A \ B ) e. _V /\ B e. C ) -> ( ( A \ B ) u. B ) e. _V ) |
|
| 8 | ssexg | |- ( ( A C_ ( ( A \ B ) u. B ) /\ ( ( A \ B ) u. B ) e. _V ) -> A e. _V ) |
|
| 9 | 6 7 8 | sylancr | |- ( ( ( A \ B ) e. _V /\ B e. C ) -> A e. _V ) |
| 10 | 9 | expcom | |- ( B e. C -> ( ( A \ B ) e. _V -> A e. _V ) ) |
| 11 | 1 10 | impbid2 | |- ( B e. C -> ( A e. _V <-> ( A \ B ) e. _V ) ) |