This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for class difference. Exercise 4.8 of Stoll p. 16. (Contributed by NM, 18-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difdifdir | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ ( B \ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif32 | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ B ) |
|
| 2 | invdif | |- ( ( A \ C ) i^i ( _V \ B ) ) = ( ( A \ C ) \ B ) |
|
| 3 | 1 2 | eqtr4i | |- ( ( A \ B ) \ C ) = ( ( A \ C ) i^i ( _V \ B ) ) |
| 4 | un0 | |- ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) = ( ( A \ C ) i^i ( _V \ B ) ) |
|
| 5 | 3 4 | eqtr4i | |- ( ( A \ B ) \ C ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) |
| 6 | indi | |- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. ( ( A \ C ) i^i C ) ) |
|
| 7 | disjdif | |- ( C i^i ( A \ C ) ) = (/) |
|
| 8 | incom | |- ( C i^i ( A \ C ) ) = ( ( A \ C ) i^i C ) |
|
| 9 | 7 8 | eqtr3i | |- (/) = ( ( A \ C ) i^i C ) |
| 10 | 9 | uneq2i | |- ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. ( ( A \ C ) i^i C ) ) |
| 11 | 6 10 | eqtr4i | |- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( ( A \ C ) i^i ( _V \ B ) ) u. (/) ) |
| 12 | 5 11 | eqtr4i | |- ( ( A \ B ) \ C ) = ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) |
| 13 | ddif | |- ( _V \ ( _V \ C ) ) = C |
|
| 14 | 13 | uneq2i | |- ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) = ( ( _V \ B ) u. C ) |
| 15 | indm | |- ( _V \ ( B i^i ( _V \ C ) ) ) = ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) |
|
| 16 | invdif | |- ( B i^i ( _V \ C ) ) = ( B \ C ) |
|
| 17 | 16 | difeq2i | |- ( _V \ ( B i^i ( _V \ C ) ) ) = ( _V \ ( B \ C ) ) |
| 18 | 15 17 | eqtr3i | |- ( ( _V \ B ) u. ( _V \ ( _V \ C ) ) ) = ( _V \ ( B \ C ) ) |
| 19 | 14 18 | eqtr3i | |- ( ( _V \ B ) u. C ) = ( _V \ ( B \ C ) ) |
| 20 | 19 | ineq2i | |- ( ( A \ C ) i^i ( ( _V \ B ) u. C ) ) = ( ( A \ C ) i^i ( _V \ ( B \ C ) ) ) |
| 21 | invdif | |- ( ( A \ C ) i^i ( _V \ ( B \ C ) ) ) = ( ( A \ C ) \ ( B \ C ) ) |
|
| 22 | 12 20 21 | 3eqtri | |- ( ( A \ B ) \ C ) = ( ( A \ C ) \ ( B \ C ) ) |