This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for diag2f1 . The converse is trivial ( fveq2 ). (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag2f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag2f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag2f1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| diag2f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag2f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag2f1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag2f1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| diag2f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| diag2f1lem.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| diag2f1lem.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | diag2f1lem | ⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) → 𝐹 = 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag2f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | diag2f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 4 | diag2f1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | diag2f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | diag2f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 7 | diag2f1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | diag2f1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 9 | diag2f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 10 | diag2f1lem.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 11 | diag2f1lem.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 12 | 1 2 3 4 5 6 7 8 10 | diag2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |
| 13 | 1 2 3 4 5 6 7 8 11 | diag2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) = ( 𝐵 × { 𝐺 } ) ) |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) ↔ ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ) ) |
| 15 | xpcan | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ↔ { 𝐹 } = { 𝐺 } ) ) | |
| 16 | 9 15 | syl | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝐹 } ) = ( 𝐵 × { 𝐺 } ) ↔ { 𝐹 } = { 𝐺 } ) ) |
| 17 | 14 16 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) ↔ { 𝐹 } = { 𝐺 } ) ) |
| 18 | sneqrg | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( { 𝐹 } = { 𝐺 } → 𝐹 = 𝐺 ) ) | |
| 19 | 10 18 | syl | ⊢ ( 𝜑 → ( { 𝐹 } = { 𝐺 } → 𝐹 = 𝐺 ) ) |
| 20 | 17 19 | sylbid | ⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐺 ) → 𝐹 = 𝐺 ) ) |