This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for diag2f1 . The converse is trivial ( fveq2 ). (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1.l | ||
| diag2f1.a | |||
| diag2f1.b | |||
| diag2f1.h | |||
| diag2f1.c | |||
| diag2f1.d | |||
| diag2f1.x | |||
| diag2f1.y | |||
| diag2f1.0 | |||
| diag2f1lem.f | |||
| diag2f1lem.g | |||
| Assertion | diag2f1lem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1.l | ||
| 2 | diag2f1.a | ||
| 3 | diag2f1.b | ||
| 4 | diag2f1.h | ||
| 5 | diag2f1.c | ||
| 6 | diag2f1.d | ||
| 7 | diag2f1.x | ||
| 8 | diag2f1.y | ||
| 9 | diag2f1.0 | ||
| 10 | diag2f1lem.f | ||
| 11 | diag2f1lem.g | ||
| 12 | 1 2 3 4 5 6 7 8 10 | diag2 | |
| 13 | 1 2 3 4 5 6 7 8 11 | diag2 | |
| 14 | 12 13 | eqeq12d | |
| 15 | xpcan | ||
| 16 | 9 15 | syl | |
| 17 | 14 16 | bitrd | |
| 18 | sneqrg | ||
| 19 | 10 18 | syl | |
| 20 | 17 19 | sylbid |