This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag2f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag2f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag2f1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| diag2f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag2f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag2f1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag2f1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| diag2f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| diag2f1.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | ||
| Assertion | diag2f1 | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag2f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | diag2f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 4 | diag2f1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | diag2f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | diag2f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 7 | diag2f1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | diag2f1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 9 | diag2f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 10 | diag2f1.n | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | |
| 11 | eqid | ⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) | |
| 12 | 11 10 | fuchom | ⊢ 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 13 | 1 5 6 11 | diagcl | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 14 | 13 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 15 | 2 4 12 14 7 8 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐶 ∈ Cat ) |
| 17 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐷 ∈ Cat ) |
| 18 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑋 ∈ 𝐴 ) |
| 19 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑌 ∈ 𝐴 ) |
| 20 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝐵 ≠ ∅ ) |
| 21 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 22 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 23 | 1 2 3 4 16 17 18 19 20 21 22 | diag2f1lem | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) ) → ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 24 | 23 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) |
| 25 | dff13 | ⊢ ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ↔ ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ( ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑓 ) = ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝑔 ) → 𝑓 = 𝑔 ) ) ) | |
| 26 | 15 24 25 | sylanbrc | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |