This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for diag2f1 . The converse is trivial ( fveq2 ). (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1.l | |- L = ( C DiagFunc D ) |
|
| diag2f1.a | |- A = ( Base ` C ) |
||
| diag2f1.b | |- B = ( Base ` D ) |
||
| diag2f1.h | |- H = ( Hom ` C ) |
||
| diag2f1.c | |- ( ph -> C e. Cat ) |
||
| diag2f1.d | |- ( ph -> D e. Cat ) |
||
| diag2f1.x | |- ( ph -> X e. A ) |
||
| diag2f1.y | |- ( ph -> Y e. A ) |
||
| diag2f1.0 | |- ( ph -> B =/= (/) ) |
||
| diag2f1lem.f | |- ( ph -> F e. ( X H Y ) ) |
||
| diag2f1lem.g | |- ( ph -> G e. ( X H Y ) ) |
||
| Assertion | diag2f1lem | |- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) -> F = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag2f1.a | |- A = ( Base ` C ) |
|
| 3 | diag2f1.b | |- B = ( Base ` D ) |
|
| 4 | diag2f1.h | |- H = ( Hom ` C ) |
|
| 5 | diag2f1.c | |- ( ph -> C e. Cat ) |
|
| 6 | diag2f1.d | |- ( ph -> D e. Cat ) |
|
| 7 | diag2f1.x | |- ( ph -> X e. A ) |
|
| 8 | diag2f1.y | |- ( ph -> Y e. A ) |
|
| 9 | diag2f1.0 | |- ( ph -> B =/= (/) ) |
|
| 10 | diag2f1lem.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 11 | diag2f1lem.g | |- ( ph -> G e. ( X H Y ) ) |
|
| 12 | 1 2 3 4 5 6 7 8 10 | diag2 | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` F ) = ( B X. { F } ) ) |
| 13 | 1 2 3 4 5 6 7 8 11 | diag2 | |- ( ph -> ( ( X ( 2nd ` L ) Y ) ` G ) = ( B X. { G } ) ) |
| 14 | 12 13 | eqeq12d | |- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) <-> ( B X. { F } ) = ( B X. { G } ) ) ) |
| 15 | xpcan | |- ( B =/= (/) -> ( ( B X. { F } ) = ( B X. { G } ) <-> { F } = { G } ) ) |
|
| 16 | 9 15 | syl | |- ( ph -> ( ( B X. { F } ) = ( B X. { G } ) <-> { F } = { G } ) ) |
| 17 | 14 16 | bitrd | |- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) <-> { F } = { G } ) ) |
| 18 | sneqrg | |- ( F e. ( X H Y ) -> ( { F } = { G } -> F = G ) ) |
|
| 19 | 10 18 | syl | |- ( ph -> ( { F } = { G } -> F = G ) ) |
| 20 | 17 19 | sylbid | |- ( ph -> ( ( ( X ( 2nd ` L ) Y ) ` F ) = ( ( X ( 2nd ` L ) Y ) ` G ) -> F = G ) ) |