This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The object part of the diagonal functor is 1-1 if B is non-empty. Note that ( ph -> ( M = N <-> X = Y ) ) also holds because of diag1f1 and f1fveq . (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag1f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag1f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag1f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag1f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag1f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| diag1f1lem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag1f1lem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| diag1f1lem.m | ⊢ 𝑀 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | ||
| diag1f1lem.n | ⊢ 𝑁 = ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) | ||
| Assertion | diag1f1lem | ⊢ ( 𝜑 → ( 𝑀 = 𝑁 → 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag1f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | diag1f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | diag1f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | diag1f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 6 | diag1f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 7 | diag1f1lem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | diag1f1lem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 9 | diag1f1lem.m | ⊢ 𝑀 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 10 | diag1f1lem.n | ⊢ 𝑁 = ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) | |
| 11 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 12 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 13 | 1 2 3 4 7 9 5 11 12 | diag1a | ⊢ ( 𝜑 → 𝑀 = 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 ) |
| 14 | 1 2 3 4 8 10 5 11 12 | diag1a | ⊢ ( 𝜑 → 𝑁 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 ) |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝜑 → ( 𝑀 = 𝑁 ↔ 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 ) ) |
| 16 | 5 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | snex | ⊢ { 𝑋 } ∈ V | |
| 18 | 16 17 | xpex | ⊢ ( 𝐵 × { 𝑋 } ) ∈ V |
| 19 | 16 16 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) ∈ V |
| 20 | 18 19 | opth1 | ⊢ ( 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 → ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ) |
| 21 | xpcan | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ↔ { 𝑋 } = { 𝑌 } ) ) | |
| 22 | 6 21 | syl | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) ↔ { 𝑋 } = { 𝑌 } ) ) |
| 23 | sneqrg | ⊢ ( 𝑋 ∈ 𝐴 → ( { 𝑋 } = { 𝑌 } → 𝑋 = 𝑌 ) ) | |
| 24 | 7 23 | syl | ⊢ ( 𝜑 → ( { 𝑋 } = { 𝑌 } → 𝑋 = 𝑌 ) ) |
| 25 | 22 24 | sylbid | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) = ( 𝐵 × { 𝑌 } ) → 𝑋 = 𝑌 ) ) |
| 26 | 20 25 | syl5 | ⊢ ( 𝜑 → ( 〈 ( 𝐵 × { 𝑋 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) } ) ) 〉 = 〈 ( 𝐵 × { 𝑌 } ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) × { ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) } ) ) 〉 → 𝑋 = 𝑌 ) ) |
| 27 | 15 26 | sylbid | ⊢ ( 𝜑 → ( 𝑀 = 𝑁 → 𝑋 = 𝑌 ) ) |