This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The object part of the diagonal functor is 1-1 if B is non-empty. Note that ( ph -> ( M = N <-> X = Y ) ) also holds because of diag1f1 and f1fveq . (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1.l | |- L = ( C DiagFunc D ) |
|
| diag1f1.c | |- ( ph -> C e. Cat ) |
||
| diag1f1.d | |- ( ph -> D e. Cat ) |
||
| diag1f1.a | |- A = ( Base ` C ) |
||
| diag1f1.b | |- B = ( Base ` D ) |
||
| diag1f1.0 | |- ( ph -> B =/= (/) ) |
||
| diag1f1lem.x | |- ( ph -> X e. A ) |
||
| diag1f1lem.y | |- ( ph -> Y e. A ) |
||
| diag1f1lem.m | |- M = ( ( 1st ` L ) ` X ) |
||
| diag1f1lem.n | |- N = ( ( 1st ` L ) ` Y ) |
||
| Assertion | diag1f1lem | |- ( ph -> ( M = N -> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag1f1.c | |- ( ph -> C e. Cat ) |
|
| 3 | diag1f1.d | |- ( ph -> D e. Cat ) |
|
| 4 | diag1f1.a | |- A = ( Base ` C ) |
|
| 5 | diag1f1.b | |- B = ( Base ` D ) |
|
| 6 | diag1f1.0 | |- ( ph -> B =/= (/) ) |
|
| 7 | diag1f1lem.x | |- ( ph -> X e. A ) |
|
| 8 | diag1f1lem.y | |- ( ph -> Y e. A ) |
|
| 9 | diag1f1lem.m | |- M = ( ( 1st ` L ) ` X ) |
|
| 10 | diag1f1lem.n | |- N = ( ( 1st ` L ) ` Y ) |
|
| 11 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 12 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 13 | 1 2 3 4 7 9 5 11 12 | diag1a | |- ( ph -> M = <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. ) |
| 14 | 1 2 3 4 8 10 5 11 12 | diag1a | |- ( ph -> N = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. ) |
| 15 | 13 14 | eqeq12d | |- ( ph -> ( M = N <-> <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. ) ) |
| 16 | 5 | fvexi | |- B e. _V |
| 17 | snex | |- { X } e. _V |
|
| 18 | 16 17 | xpex | |- ( B X. { X } ) e. _V |
| 19 | 16 16 | mpoex | |- ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) e. _V |
| 20 | 18 19 | opth1 | |- ( <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. -> ( B X. { X } ) = ( B X. { Y } ) ) |
| 21 | xpcan | |- ( B =/= (/) -> ( ( B X. { X } ) = ( B X. { Y } ) <-> { X } = { Y } ) ) |
|
| 22 | 6 21 | syl | |- ( ph -> ( ( B X. { X } ) = ( B X. { Y } ) <-> { X } = { Y } ) ) |
| 23 | sneqrg | |- ( X e. A -> ( { X } = { Y } -> X = Y ) ) |
|
| 24 | 7 23 | syl | |- ( ph -> ( { X } = { Y } -> X = Y ) ) |
| 25 | 22 24 | sylbid | |- ( ph -> ( ( B X. { X } ) = ( B X. { Y } ) -> X = Y ) ) |
| 26 | 20 25 | syl5 | |- ( ph -> ( <. ( B X. { X } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` X ) } ) ) >. = <. ( B X. { Y } ) , ( x e. B , y e. B |-> ( ( x ( Hom ` D ) y ) X. { ( ( Id ` C ) ` Y ) } ) ) >. -> X = Y ) ) |
| 27 | 15 26 | sylbid | |- ( ph -> ( M = N -> X = Y ) ) |