This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the symmetric difference, given in Example 4.1 of Stoll p. 262 (the original definition corresponds to Stoll p. 13). (Contributed by NM, 17-Aug-2004) (Revised by BJ, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymdif3 | |- ( A /_\ B ) = ( ( A u. B ) \ ( A i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) |
|
| 2 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 3 | 2 | difeq2i | |- ( B \ ( A i^i B ) ) = ( B \ ( B i^i A ) ) |
| 4 | difin | |- ( B \ ( B i^i A ) ) = ( B \ A ) |
|
| 5 | 3 4 | eqtri | |- ( B \ ( A i^i B ) ) = ( B \ A ) |
| 6 | 1 5 | uneq12i | |- ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) = ( ( A \ B ) u. ( B \ A ) ) |
| 7 | difundir | |- ( ( A u. B ) \ ( A i^i B ) ) = ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) |
|
| 8 | df-symdif | |- ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) |
|
| 9 | 6 7 8 | 3eqtr4ri | |- ( A /_\ B ) = ( ( A u. B ) \ ( A i^i B ) ) |