This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of Scott Fenton's version of Succ , cf. df-sucmap . (Contributed by Peter Mazsa, 6-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsuccf2 | ⊢ Succ = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-succf | ⊢ Succ = ( Cup ∘ ( I ⊗ Singleton ) ) | |
| 2 | df-co | ⊢ ( Cup ∘ ( I ⊗ Singleton ) ) = { 〈 𝑚 , 𝑛 〉 ∣ ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) } | |
| 3 | vex | ⊢ 𝑚 ∈ V | |
| 4 | vex | ⊢ 𝑛 ∈ V | |
| 5 | 3 4 | lemsuccf | ⊢ ( ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) ↔ 𝑛 = suc 𝑚 ) |
| 6 | eqcom | ⊢ ( 𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛 ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) ↔ suc 𝑚 = 𝑛 ) |
| 8 | 7 | opabbii | ⊢ { 〈 𝑚 , 𝑛 〉 ∣ ∃ 𝑥 ( 𝑚 ( I ⊗ Singleton ) 𝑥 ∧ 𝑥 Cup 𝑛 ) } = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |
| 9 | 1 2 8 | 3eqtri | ⊢ Succ = { 〈 𝑚 , 𝑛 〉 ∣ suc 𝑚 = 𝑛 } |