This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of Scott Fenton's version of Succ , cf. df-sucmap . (Contributed by Peter Mazsa, 6-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsuccf2 | |- Succ = { <. m , n >. | suc m = n } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-succf | |- Succ = ( Cup o. ( _I (x) Singleton ) ) |
|
| 2 | df-co | |- ( Cup o. ( _I (x) Singleton ) ) = { <. m , n >. | E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) } |
|
| 3 | vex | |- m e. _V |
|
| 4 | vex | |- n e. _V |
|
| 5 | 3 4 | lemsuccf | |- ( E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) <-> n = suc m ) |
| 6 | eqcom | |- ( n = suc m <-> suc m = n ) |
|
| 7 | 5 6 | bitri | |- ( E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) <-> suc m = n ) |
| 8 | 7 | opabbii | |- { <. m , n >. | E. x ( m ( _I (x) Singleton ) x /\ x Cup n ) } = { <. m , n >. | suc m = n } |
| 9 | 1 2 8 | 3eqtri | |- Succ = { <. m , n >. | suc m = n } |