This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrp2 | |- RR+ = ( 0 (,) +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltpnf | |- ( x e. RR -> x < +oo ) |
|
| 2 | 1 | adantr | |- ( ( x e. RR /\ 0 < x ) -> x < +oo ) |
| 3 | 2 | pm4.71i | |- ( ( x e. RR /\ 0 < x ) <-> ( ( x e. RR /\ 0 < x ) /\ x < +oo ) ) |
| 4 | df-3an | |- ( ( x e. RR /\ 0 < x /\ x < +oo ) <-> ( ( x e. RR /\ 0 < x ) /\ x < +oo ) ) |
|
| 5 | 3 4 | bitr4i | |- ( ( x e. RR /\ 0 < x ) <-> ( x e. RR /\ 0 < x /\ x < +oo ) ) |
| 6 | elrp | |- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) |
|
| 7 | 0xr | |- 0 e. RR* |
|
| 8 | pnfxr | |- +oo e. RR* |
|
| 9 | elioo2 | |- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( x e. ( 0 (,) +oo ) <-> ( x e. RR /\ 0 < x /\ x < +oo ) ) ) |
|
| 10 | 7 8 9 | mp2an | |- ( x e. ( 0 (,) +oo ) <-> ( x e. RR /\ 0 < x /\ x < +oo ) ) |
| 11 | 5 6 10 | 3bitr4i | |- ( x e. RR+ <-> x e. ( 0 (,) +oo ) ) |
| 12 | 11 | eqriv | |- RR+ = ( 0 (,) +oo ) |