This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by Mario Carneiro, 8-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrab3ss | |- ( A C_ B -> { x e. A | ph } = ( A i^i { x e. B | ph } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 | |- ( A C_ B <-> ( A i^i B ) = A ) |
|
| 2 | ineq1 | |- ( ( A i^i B ) = A -> ( ( A i^i B ) i^i { x | ph } ) = ( A i^i { x | ph } ) ) |
|
| 3 | 2 | eqcomd | |- ( ( A i^i B ) = A -> ( A i^i { x | ph } ) = ( ( A i^i B ) i^i { x | ph } ) ) |
| 4 | 1 3 | sylbi | |- ( A C_ B -> ( A i^i { x | ph } ) = ( ( A i^i B ) i^i { x | ph } ) ) |
| 5 | dfrab3 | |- { x e. A | ph } = ( A i^i { x | ph } ) |
|
| 6 | dfrab3 | |- { x e. B | ph } = ( B i^i { x | ph } ) |
|
| 7 | 6 | ineq2i | |- ( A i^i { x e. B | ph } ) = ( A i^i ( B i^i { x | ph } ) ) |
| 8 | inass | |- ( ( A i^i B ) i^i { x | ph } ) = ( A i^i ( B i^i { x | ph } ) ) |
|
| 9 | 7 8 | eqtr4i | |- ( A i^i { x e. B | ph } ) = ( ( A i^i B ) i^i { x | ph } ) |
| 10 | 4 5 9 | 3eqtr4g | |- ( A C_ B -> { x e. A | ph } = ( A i^i { x e. B | ph } ) ) |