This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of natural numbers _om can be defined as the intersection of all inductive sets (which is the smallest inductive set, since inductive sets are closed under intersection), which is valid provided we assume the Axiom of Infinity. Definition 6.3 of Eisenberg p. 82. Definition 1.20 of Schloeder p. 3. (Contributed by NM, 6-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom3 | ⊢ ω = ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | 1 | elintab | ⊢ ( ∅ ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → ∅ ∈ 𝑥 ) ) |
| 3 | simpl | ⊢ ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → ∅ ∈ 𝑥 ) | |
| 4 | 2 3 | mpgbir | ⊢ ∅ ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |
| 5 | suceq | ⊢ ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑦 = 𝑧 → ( suc 𝑦 ∈ 𝑥 ↔ suc 𝑧 ∈ 𝑥 ) ) |
| 7 | 6 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ( 𝑧 ∈ 𝑥 → suc 𝑧 ∈ 𝑥 ) ) |
| 8 | 7 | adantl | ⊢ ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → ( 𝑧 ∈ 𝑥 → suc 𝑧 ∈ 𝑥 ) ) |
| 9 | 8 | a2i | ⊢ ( ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → suc 𝑧 ∈ 𝑥 ) ) |
| 10 | 9 | alimi | ⊢ ( ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → suc 𝑧 ∈ 𝑥 ) ) |
| 11 | vex | ⊢ 𝑧 ∈ V | |
| 12 | 11 | elintab | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 13 | 11 | sucex | ⊢ suc 𝑧 ∈ V |
| 14 | 13 | elintab | ⊢ ( suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → suc 𝑧 ∈ 𝑥 ) ) |
| 15 | 10 12 14 | 3imtr4i | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) |
| 16 | 15 | rgenw | ⊢ ∀ 𝑧 ∈ ω ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) |
| 17 | peano5 | ⊢ ( ( ∅ ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ∧ ∀ 𝑧 ∈ ω ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → suc 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) ) → ω ⊆ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ) | |
| 18 | 4 16 17 | mp2an | ⊢ ω ⊆ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |
| 19 | peano1 | ⊢ ∅ ∈ ω | |
| 20 | peano2 | ⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) | |
| 21 | 20 | rgen | ⊢ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω |
| 22 | omex | ⊢ ω ∈ V | |
| 23 | eleq2 | ⊢ ( 𝑥 = ω → ( ∅ ∈ 𝑥 ↔ ∅ ∈ ω ) ) | |
| 24 | eleq2 | ⊢ ( 𝑥 = ω → ( suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω ) ) | |
| 25 | 24 | raleqbi1dv | ⊢ ( 𝑥 = ω → ( ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) ) |
| 26 | 23 25 | anbi12d | ⊢ ( 𝑥 = ω → ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) ↔ ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) ) ) |
| 27 | eleq2 | ⊢ ( 𝑥 = ω → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ω ) ) | |
| 28 | 26 27 | imbi12d | ⊢ ( 𝑥 = ω → ( ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ↔ ( ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) → 𝑧 ∈ ω ) ) ) |
| 29 | 22 28 | spcv | ⊢ ( ∀ 𝑥 ( ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) → 𝑧 ∈ ω ) ) |
| 30 | 12 29 | sylbi | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → ( ( ∅ ∈ ω ∧ ∀ 𝑦 ∈ ω suc 𝑦 ∈ ω ) → 𝑧 ∈ ω ) ) |
| 31 | 19 21 30 | mp2ani | ⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } → 𝑧 ∈ ω ) |
| 32 | 31 | ssriv | ⊢ ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } ⊆ ω |
| 33 | 18 32 | eqssi | ⊢ ω = ∩ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 ) } |