This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplification of elom assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elom3 | ⊢ ( 𝐴 ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom | ⊢ ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) | |
| 2 | limom | ⊢ Lim ω | |
| 3 | omex | ⊢ ω ∈ V | |
| 4 | limeq | ⊢ ( 𝑥 = ω → ( Lim 𝑥 ↔ Lim ω ) ) | |
| 5 | eleq2 | ⊢ ( 𝑥 = ω → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ω ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑥 = ω → ( ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ↔ ( Lim ω → 𝐴 ∈ ω ) ) ) |
| 7 | 3 6 | spcv | ⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → ( Lim ω → 𝐴 ∈ ω ) ) |
| 8 | 2 7 | mpi | ⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → 𝐴 ∈ ω ) |
| 9 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 10 | 8 9 | syl | ⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → 𝐴 ∈ On ) |
| 11 | 10 | pm4.71ri | ⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
| 12 | 1 11 | bitr4i | ⊢ ( 𝐴 ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) |