This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the set of natural numbers _om . Definition 7.28 of TakeutiZaring p. 42, who use the symbol K_I for the restricted class abstraction of non-limit ordinal numbers (see nlimon ). (Contributed by NM, 1-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom2 | ⊢ ω = { 𝑥 ∈ On ∣ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om | ⊢ ω = { 𝑥 ∈ On ∣ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) } | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | limelon | ⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → 𝑧 ∈ On ) | |
| 4 | 2 3 | mpan | ⊢ ( Lim 𝑧 → 𝑧 ∈ On ) |
| 5 | 4 | pm4.71ri | ⊢ ( Lim 𝑧 ↔ ( 𝑧 ∈ On ∧ Lim 𝑧 ) ) |
| 6 | 5 | imbi1i | ⊢ ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( ( 𝑧 ∈ On ∧ Lim 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 7 | impexp | ⊢ ( ( ( 𝑧 ∈ On ∧ Lim 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ On → ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) ) | |
| 8 | con34b | ⊢ ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧 ) ) | |
| 9 | ibar | ⊢ ( 𝑧 ∈ On → ( ¬ Lim 𝑧 ↔ ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) | |
| 10 | 9 | imbi2d | ⊢ ( 𝑧 ∈ On → ( ( ¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧 ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 11 | 8 10 | bitrid | ⊢ ( 𝑧 ∈ On → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 12 | 11 | pm5.74i | ⊢ ( ( 𝑧 ∈ On → ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ) ↔ ( 𝑧 ∈ On → ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 13 | 6 7 12 | 3bitri | ⊢ ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ On → ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 14 | onsssuc | ⊢ ( ( 𝑧 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ suc 𝑥 ) ) | |
| 15 | ontri1 | ⊢ ( ( 𝑧 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑧 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑧 ) ) | |
| 16 | 14 15 | bitr3d | ⊢ ( ( 𝑧 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧 ) ) |
| 17 | 16 | ancoms | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧 ) ) |
| 18 | limeq | ⊢ ( 𝑦 = 𝑧 → ( Lim 𝑦 ↔ Lim 𝑧 ) ) | |
| 19 | 18 | notbid | ⊢ ( 𝑦 = 𝑧 → ( ¬ Lim 𝑦 ↔ ¬ Lim 𝑧 ) ) |
| 20 | 19 | elrab | ⊢ ( 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ↔ ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) |
| 21 | 20 | a1i | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ↔ ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) |
| 22 | 17 21 | imbi12d | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ↔ ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) |
| 23 | 22 | pm5.74da | ⊢ ( 𝑥 ∈ On → ( ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ↔ ( 𝑧 ∈ On → ( ¬ 𝑥 ∈ 𝑧 → ( 𝑧 ∈ On ∧ ¬ Lim 𝑧 ) ) ) ) ) |
| 24 | 13 23 | bitr4id | ⊢ ( 𝑥 ∈ On → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) ) |
| 25 | impexp | ⊢ ( ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ↔ ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) | |
| 26 | simpr | ⊢ ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ suc 𝑥 ) | |
| 27 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 28 | onelon | ⊢ ( ( suc 𝑥 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ On ) | |
| 29 | 28 | ex | ⊢ ( suc 𝑥 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ On ) ) |
| 30 | 27 29 | syl | ⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ On ) ) |
| 31 | 30 | ancrd | ⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ suc 𝑥 → ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) ) ) |
| 32 | 26 31 | impbid2 | ⊢ ( 𝑥 ∈ On → ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) ↔ 𝑧 ∈ suc 𝑥 ) ) |
| 33 | 32 | imbi1d | ⊢ ( 𝑥 ∈ On → ( ( ( 𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥 ) → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ↔ ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 34 | 25 33 | bitr3id | ⊢ ( 𝑥 ∈ On → ( ( 𝑧 ∈ On → ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ↔ ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 35 | 24 34 | bitrd | ⊢ ( 𝑥 ∈ On → ( ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 36 | 35 | albidv | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) ) |
| 37 | df-ss | ⊢ ( suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ↔ ∀ 𝑧 ( 𝑧 ∈ suc 𝑥 → 𝑧 ∈ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) | |
| 38 | 36 37 | bitr4di | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) ↔ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } ) ) |
| 39 | 38 | rabbiia | ⊢ { 𝑥 ∈ On ∣ ∀ 𝑧 ( Lim 𝑧 → 𝑥 ∈ 𝑧 ) } = { 𝑥 ∈ On ∣ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } } |
| 40 | 1 39 | eqtri | ⊢ ω = { 𝑥 ∈ On ∣ suc 𝑥 ⊆ { 𝑦 ∈ On ∣ ¬ Lim 𝑦 } } |