This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the set of natural numbers _om . Definition 7.28 of TakeutiZaring p. 42, who use the symbol K_I for the restricted class abstraction of non-limit ordinal numbers (see nlimon ). (Contributed by NM, 1-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfom2 | |- _om = { x e. On | suc x C_ { y e. On | -. Lim y } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om | |- _om = { x e. On | A. z ( Lim z -> x e. z ) } |
|
| 2 | vex | |- z e. _V |
|
| 3 | limelon | |- ( ( z e. _V /\ Lim z ) -> z e. On ) |
|
| 4 | 2 3 | mpan | |- ( Lim z -> z e. On ) |
| 5 | 4 | pm4.71ri | |- ( Lim z <-> ( z e. On /\ Lim z ) ) |
| 6 | 5 | imbi1i | |- ( ( Lim z -> x e. z ) <-> ( ( z e. On /\ Lim z ) -> x e. z ) ) |
| 7 | impexp | |- ( ( ( z e. On /\ Lim z ) -> x e. z ) <-> ( z e. On -> ( Lim z -> x e. z ) ) ) |
|
| 8 | con34b | |- ( ( Lim z -> x e. z ) <-> ( -. x e. z -> -. Lim z ) ) |
|
| 9 | ibar | |- ( z e. On -> ( -. Lim z <-> ( z e. On /\ -. Lim z ) ) ) |
|
| 10 | 9 | imbi2d | |- ( z e. On -> ( ( -. x e. z -> -. Lim z ) <-> ( -. x e. z -> ( z e. On /\ -. Lim z ) ) ) ) |
| 11 | 8 10 | bitrid | |- ( z e. On -> ( ( Lim z -> x e. z ) <-> ( -. x e. z -> ( z e. On /\ -. Lim z ) ) ) ) |
| 12 | 11 | pm5.74i | |- ( ( z e. On -> ( Lim z -> x e. z ) ) <-> ( z e. On -> ( -. x e. z -> ( z e. On /\ -. Lim z ) ) ) ) |
| 13 | 6 7 12 | 3bitri | |- ( ( Lim z -> x e. z ) <-> ( z e. On -> ( -. x e. z -> ( z e. On /\ -. Lim z ) ) ) ) |
| 14 | onsssuc | |- ( ( z e. On /\ x e. On ) -> ( z C_ x <-> z e. suc x ) ) |
|
| 15 | ontri1 | |- ( ( z e. On /\ x e. On ) -> ( z C_ x <-> -. x e. z ) ) |
|
| 16 | 14 15 | bitr3d | |- ( ( z e. On /\ x e. On ) -> ( z e. suc x <-> -. x e. z ) ) |
| 17 | 16 | ancoms | |- ( ( x e. On /\ z e. On ) -> ( z e. suc x <-> -. x e. z ) ) |
| 18 | limeq | |- ( y = z -> ( Lim y <-> Lim z ) ) |
|
| 19 | 18 | notbid | |- ( y = z -> ( -. Lim y <-> -. Lim z ) ) |
| 20 | 19 | elrab | |- ( z e. { y e. On | -. Lim y } <-> ( z e. On /\ -. Lim z ) ) |
| 21 | 20 | a1i | |- ( ( x e. On /\ z e. On ) -> ( z e. { y e. On | -. Lim y } <-> ( z e. On /\ -. Lim z ) ) ) |
| 22 | 17 21 | imbi12d | |- ( ( x e. On /\ z e. On ) -> ( ( z e. suc x -> z e. { y e. On | -. Lim y } ) <-> ( -. x e. z -> ( z e. On /\ -. Lim z ) ) ) ) |
| 23 | 22 | pm5.74da | |- ( x e. On -> ( ( z e. On -> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) <-> ( z e. On -> ( -. x e. z -> ( z e. On /\ -. Lim z ) ) ) ) ) |
| 24 | 13 23 | bitr4id | |- ( x e. On -> ( ( Lim z -> x e. z ) <-> ( z e. On -> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) ) ) |
| 25 | impexp | |- ( ( ( z e. On /\ z e. suc x ) -> z e. { y e. On | -. Lim y } ) <-> ( z e. On -> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) ) |
|
| 26 | simpr | |- ( ( z e. On /\ z e. suc x ) -> z e. suc x ) |
|
| 27 | onsuc | |- ( x e. On -> suc x e. On ) |
|
| 28 | onelon | |- ( ( suc x e. On /\ z e. suc x ) -> z e. On ) |
|
| 29 | 28 | ex | |- ( suc x e. On -> ( z e. suc x -> z e. On ) ) |
| 30 | 27 29 | syl | |- ( x e. On -> ( z e. suc x -> z e. On ) ) |
| 31 | 30 | ancrd | |- ( x e. On -> ( z e. suc x -> ( z e. On /\ z e. suc x ) ) ) |
| 32 | 26 31 | impbid2 | |- ( x e. On -> ( ( z e. On /\ z e. suc x ) <-> z e. suc x ) ) |
| 33 | 32 | imbi1d | |- ( x e. On -> ( ( ( z e. On /\ z e. suc x ) -> z e. { y e. On | -. Lim y } ) <-> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) ) |
| 34 | 25 33 | bitr3id | |- ( x e. On -> ( ( z e. On -> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) <-> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) ) |
| 35 | 24 34 | bitrd | |- ( x e. On -> ( ( Lim z -> x e. z ) <-> ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) ) |
| 36 | 35 | albidv | |- ( x e. On -> ( A. z ( Lim z -> x e. z ) <-> A. z ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) ) |
| 37 | df-ss | |- ( suc x C_ { y e. On | -. Lim y } <-> A. z ( z e. suc x -> z e. { y e. On | -. Lim y } ) ) |
|
| 38 | 36 37 | bitr4di | |- ( x e. On -> ( A. z ( Lim z -> x e. z ) <-> suc x C_ { y e. On | -. Lim y } ) ) |
| 39 | 38 | rabbiia | |- { x e. On | A. z ( Lim z -> x e. z ) } = { x e. On | suc x C_ { y e. On | -. Lim y } } |
| 40 | 1 39 | eqtri | |- _om = { x e. On | suc x C_ { y e. On | -. Lim y } } |