This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the maps-to notation df-mpo (although it requires that C be a set). (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfmpo.1 | ⊢ 𝐶 ∈ V | |
| Assertion | dfmpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpo.1 | ⊢ 𝐶 ∈ V | |
| 2 | mpompts | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ) | |
| 3 | 1 | csbex | ⊢ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ∈ V |
| 4 | 3 | csbex | ⊢ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ∈ V |
| 5 | 4 | dfmpt | ⊢ ( 𝑤 ∈ ( 𝐴 × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 ) = ∪ 𝑤 ∈ ( 𝐴 × 𝐵 ) { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } |
| 6 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 | |
| 8 | 6 7 | nfop | ⊢ Ⅎ 𝑥 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 |
| 9 | 8 | nfsn | ⊢ Ⅎ 𝑥 { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } |
| 10 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 11 | nfcv | ⊢ Ⅎ 𝑦 ( 1st ‘ 𝑤 ) | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 | |
| 13 | 11 12 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 |
| 14 | 10 13 | nfop | ⊢ Ⅎ 𝑦 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 |
| 15 | 14 | nfsn | ⊢ Ⅎ 𝑦 { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } |
| 16 | nfcv | ⊢ Ⅎ 𝑤 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } | |
| 17 | id | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → 𝑤 = 〈 𝑥 , 𝑦 〉 ) | |
| 18 | csbopeq1a | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 = 𝐶 ) | |
| 19 | 17 18 | opeq12d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 = 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 ) |
| 20 | 19 | sneqd | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } = { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } ) |
| 21 | 9 15 16 20 | iunxpf | ⊢ ∪ 𝑤 ∈ ( 𝐴 × 𝐵 ) { 〈 𝑤 , ⦋ ( 1st ‘ 𝑤 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑦 ⦌ 𝐶 〉 } = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } |
| 22 | 2 5 21 | 3eqtri | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 { 〈 〈 𝑥 , 𝑦 〉 , 𝐶 〉 } |