This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nfia1

Description: Lemma 23 of Monk2 p. 114. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Assertion nfia1 𝑥 ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 nfa1 𝑥𝑥 𝜑
2 nfa1 𝑥𝑥 𝜓
3 1 2 nfim 𝑥 ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 )