This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elementary proof showing the reverse direction of dfmoeu . Here the characterizing expression of existential uniqueness ( eu6 ) is derived from that of uniqueness ( df-mo ). (Contributed by Wolf Lammen, 3-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeumo | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev | ⊢ ∃ 𝑥 𝑥 = 𝑦 | |
| 2 | biimpr | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) | |
| 3 | 2 | aleximi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 𝜑 ) ) |
| 4 | 1 3 | mpi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) |
| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) |
| 6 | 5 | pm4.71ri | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 7 | abai | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ) | |
| 8 | dfmoeu | ⊢ ( ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 9 | 8 | anbi2i | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 10 | 6 7 9 | 3bitrri | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |