This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007) (Revised by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfioo2 | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 2 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 3 | 1 2 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 4 | fnov | ⊢ ( (,) Fn ( ℝ* × ℝ* ) ↔ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) ) | |
| 5 | 3 4 | mpbi | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) |
| 6 | iooval2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 (,) 𝑦 ) = { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) | |
| 7 | 6 | mpoeq3ia | ⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ ( 𝑥 (,) 𝑦 ) ) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) |
| 8 | 5 7 | eqtri | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑤 ∈ ℝ ∣ ( 𝑥 < 𝑤 ∧ 𝑤 < 𝑦 ) } ) |