This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007) (Revised by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfioo2 | |- (,) = ( x e. RR* , y e. RR* |-> { w e. RR | ( x < w /\ w < y ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 2 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 3 | 1 2 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 4 | fnov | |- ( (,) Fn ( RR* X. RR* ) <-> (,) = ( x e. RR* , y e. RR* |-> ( x (,) y ) ) ) |
|
| 5 | 3 4 | mpbi | |- (,) = ( x e. RR* , y e. RR* |-> ( x (,) y ) ) |
| 6 | iooval2 | |- ( ( x e. RR* /\ y e. RR* ) -> ( x (,) y ) = { w e. RR | ( x < w /\ w < y ) } ) |
|
| 7 | 6 | mpoeq3ia | |- ( x e. RR* , y e. RR* |-> ( x (,) y ) ) = ( x e. RR* , y e. RR* |-> { w e. RR | ( x < w /\ w < y ) } ) |
| 8 | 5 7 | eqtri | |- (,) = ( x e. RR* , y e. RR* |-> { w e. RR | ( x < w /\ w < y ) } ) |