This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfint3 | |- |^| A = ( _V \ ( `' ( _V \ _E ) " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 | |- |^| A = { x | A. y e. A x e. y } |
|
| 2 | ralnex | |- ( A. y e. A -. y `' ( _V \ _E ) x <-> -. E. y e. A y `' ( _V \ _E ) x ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | vex | |- x e. _V |
|
| 5 | 3 4 | brcnv | |- ( y `' ( _V \ _E ) x <-> x ( _V \ _E ) y ) |
| 6 | brv | |- x _V y |
|
| 7 | brdif | |- ( x ( _V \ _E ) y <-> ( x _V y /\ -. x _E y ) ) |
|
| 8 | 6 7 | mpbiran | |- ( x ( _V \ _E ) y <-> -. x _E y ) |
| 9 | 5 8 | bitr2i | |- ( -. x _E y <-> y `' ( _V \ _E ) x ) |
| 10 | 9 | con1bii | |- ( -. y `' ( _V \ _E ) x <-> x _E y ) |
| 11 | epel | |- ( x _E y <-> x e. y ) |
|
| 12 | 10 11 | bitr2i | |- ( x e. y <-> -. y `' ( _V \ _E ) x ) |
| 13 | 12 | ralbii | |- ( A. y e. A x e. y <-> A. y e. A -. y `' ( _V \ _E ) x ) |
| 14 | eldif | |- ( x e. ( _V \ ( `' ( _V \ _E ) " A ) ) <-> ( x e. _V /\ -. x e. ( `' ( _V \ _E ) " A ) ) ) |
|
| 15 | 4 14 | mpbiran | |- ( x e. ( _V \ ( `' ( _V \ _E ) " A ) ) <-> -. x e. ( `' ( _V \ _E ) " A ) ) |
| 16 | 4 | elima | |- ( x e. ( `' ( _V \ _E ) " A ) <-> E. y e. A y `' ( _V \ _E ) x ) |
| 17 | 15 16 | xchbinx | |- ( x e. ( _V \ ( `' ( _V \ _E ) " A ) ) <-> -. E. y e. A y `' ( _V \ _E ) x ) |
| 18 | 2 13 17 | 3bitr4ri | |- ( x e. ( _V \ ( `' ( _V \ _E ) " A ) ) <-> A. y e. A x e. y ) |
| 19 | 18 | eqabi | |- ( _V \ ( `' ( _V \ _E ) " A ) ) = { x | A. y e. A x e. y } |
| 20 | 1 19 | eqtr4i | |- |^| A = ( _V \ ( `' ( _V \ _E ) " A ) ) |