This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfimafn2 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 { ( 𝐹 ‘ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfimafn | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) | |
| 2 | iunab | ⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 } | |
| 3 | 1 2 | eqtr4di | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
| 4 | df-sn | ⊢ { ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∣ 𝑦 = ( 𝐹 ‘ 𝑥 ) } | |
| 5 | eqcom | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 6 | 5 | abbii | ⊢ { 𝑦 ∣ 𝑦 = ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑦 } |
| 7 | 4 6 | eqtri | ⊢ { ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑦 } |
| 8 | 7 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → { ( 𝐹 ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
| 9 | 8 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 { ( 𝐹 ‘ 𝑥 ) } = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∣ ( 𝐹 ‘ 𝑥 ) = 𝑦 } |
| 10 | 3 9 | eqtr4di | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 { ( 𝐹 ‘ 𝑥 ) } ) |