This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfimafn2 | |- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { ( F ` x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfimafn | |- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A ( F ` x ) = y } ) |
|
| 2 | iunab | |- U_ x e. A { y | ( F ` x ) = y } = { y | E. x e. A ( F ` x ) = y } |
|
| 3 | 1 2 | eqtr4di | |- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { y | ( F ` x ) = y } ) |
| 4 | df-sn | |- { ( F ` x ) } = { y | y = ( F ` x ) } |
|
| 5 | eqcom | |- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
|
| 6 | 5 | abbii | |- { y | y = ( F ` x ) } = { y | ( F ` x ) = y } |
| 7 | 4 6 | eqtri | |- { ( F ` x ) } = { y | ( F ` x ) = y } |
| 8 | 7 | a1i | |- ( x e. A -> { ( F ` x ) } = { y | ( F ` x ) = y } ) |
| 9 | 8 | iuneq2i | |- U_ x e. A { ( F ` x ) } = U_ x e. A { y | ( F ` x ) = y } |
| 10 | 3 9 | eqtr4di | |- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { ( F ` x ) } ) |