This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class abstraction defined by a negation. Version of notab using implicit substitution, which does not require ax-10 , ax-12 . (Contributed by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | notabw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | notabw | ⊢ { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑦 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notabw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur | ⊢ ( ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) ) |
| 4 | df-clab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ↔ [ 𝑥 / 𝑦 ] 𝜓 ) | |
| 5 | 1 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
| 6 | 5 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜑 ) ) |
| 7 | 6 | sbievw | ⊢ ( [ 𝑥 / 𝑦 ] 𝜓 ↔ 𝜑 ) |
| 8 | 4 7 | bitri | ⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ↔ 𝜑 ) |
| 9 | 3 8 | xchnxbi | ⊢ ( ¬ 𝜑 ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) ) |
| 10 | 9 | abbii | ⊢ { 𝑥 ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) } |
| 11 | df-dif | ⊢ ( V ∖ { 𝑦 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) } | |
| 12 | 10 11 | eqtr4i | ⊢ { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑦 ∣ 𝜓 } ) |