This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conditional operator df-if . Note that ph is independent of x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfif3.1 | |- C = { x | ph } |
|
| Assertion | dfif3 | |- if ( ph , A , B ) = ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif3.1 | |- C = { x | ph } |
|
| 2 | dfif6 | |- if ( ph , A , B ) = ( { y e. A | ph } u. { y e. B | -. ph } ) |
|
| 3 | biidd | |- ( x = y -> ( ph <-> ph ) ) |
|
| 4 | 3 | cbvabv | |- { x | ph } = { y | ph } |
| 5 | 1 4 | eqtri | |- C = { y | ph } |
| 6 | 5 | ineq2i | |- ( A i^i C ) = ( A i^i { y | ph } ) |
| 7 | dfrab3 | |- { y e. A | ph } = ( A i^i { y | ph } ) |
|
| 8 | 6 7 | eqtr4i | |- ( A i^i C ) = { y e. A | ph } |
| 9 | dfrab3 | |- { y e. B | -. ph } = ( B i^i { y | -. ph } ) |
|
| 10 | biidd | |- ( y = z -> ( ph <-> ph ) ) |
|
| 11 | 10 | notabw | |- { y | -. ph } = ( _V \ { z | ph } ) |
| 12 | biidd | |- ( x = z -> ( ph <-> ph ) ) |
|
| 13 | 12 | cbvabv | |- { x | ph } = { z | ph } |
| 14 | 1 13 | eqtri | |- C = { z | ph } |
| 15 | 14 | difeq2i | |- ( _V \ C ) = ( _V \ { z | ph } ) |
| 16 | 11 15 | eqtr4i | |- { y | -. ph } = ( _V \ C ) |
| 17 | 16 | ineq2i | |- ( B i^i { y | -. ph } ) = ( B i^i ( _V \ C ) ) |
| 18 | 9 17 | eqtr2i | |- ( B i^i ( _V \ C ) ) = { y e. B | -. ph } |
| 19 | 8 18 | uneq12i | |- ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) = ( { y e. A | ph } u. { y e. B | -. ph } ) |
| 20 | 2 19 | eqtr4i | |- if ( ph , A , B ) = ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) |