This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
| dfgrlic2.w | |- W = ( Vtx ` H ) |
||
| dfgrlic3.i | |- I = ( iEdg ` G ) |
||
| dfgrlic3.j | |- J = ( iEdg ` H ) |
||
| dfgrlic3.n | |- N = ( G ClNeighbVtx v ) |
||
| dfgrlic3.m | |- M = ( H ClNeighbVtx ( f ` v ) ) |
||
| dfgrlic3.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
||
| dfgrlic3.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
||
| Assertion | dfgrlic3 | |- ( ( G e. X /\ H e. Y ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
| 2 | dfgrlic2.w | |- W = ( Vtx ` H ) |
|
| 3 | dfgrlic3.i | |- I = ( iEdg ` G ) |
|
| 4 | dfgrlic3.j | |- J = ( iEdg ` H ) |
|
| 5 | dfgrlic3.n | |- N = ( G ClNeighbVtx v ) |
|
| 6 | dfgrlic3.m | |- M = ( H ClNeighbVtx ( f ` v ) ) |
|
| 7 | dfgrlic3.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
|
| 8 | dfgrlic3.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
|
| 9 | brgrlic | |- ( G ~=lgr H <-> ( G GraphLocIso H ) =/= (/) ) |
|
| 10 | n0 | |- ( ( G GraphLocIso H ) =/= (/) <-> E. f f e. ( G GraphLocIso H ) ) |
|
| 11 | 9 10 | bitri | |- ( G ~=lgr H <-> E. f f e. ( G GraphLocIso H ) ) |
| 12 | 1 2 5 6 3 4 7 8 | isgrlim2 | |- ( ( G e. X /\ H e. Y /\ f e. _V ) -> ( f e. ( G GraphLocIso H ) <-> ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 13 | 12 | el3v3 | |- ( ( G e. X /\ H e. Y ) -> ( f e. ( G GraphLocIso H ) <-> ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 14 | 13 | exbidv | |- ( ( G e. X /\ H e. Y ) -> ( E. f f e. ( G GraphLocIso H ) <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 15 | 11 14 | bitrid | |- ( ( G e. X /\ H e. Y ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V E. j ( j : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( j " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |