This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dffun6f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| dffun6f.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| Assertion | dffun6f | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | dffun6f.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | dffun3 | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 𝑤 | |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝑣 | |
| 6 | 4 2 5 | nfbr | ⊢ Ⅎ 𝑦 𝑤 𝐴 𝑣 |
| 7 | nfv | ⊢ Ⅎ 𝑣 𝑤 𝐴 𝑦 | |
| 8 | breq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑤 𝐴 𝑣 ↔ 𝑤 𝐴 𝑦 ) ) | |
| 9 | 6 7 8 | cbvmow | ⊢ ( ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∃* 𝑦 𝑤 𝐴 𝑦 ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑤 ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∀ 𝑤 ∃* 𝑦 𝑤 𝐴 𝑦 ) |
| 11 | df-mo | ⊢ ( ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) | |
| 12 | 11 | albii | ⊢ ( ∀ 𝑤 ∃* 𝑣 𝑤 𝐴 𝑣 ↔ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
| 13 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 14 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 15 | 13 1 14 | nfbr | ⊢ Ⅎ 𝑥 𝑤 𝐴 𝑦 |
| 16 | 15 | nfmov | ⊢ Ⅎ 𝑥 ∃* 𝑦 𝑤 𝐴 𝑦 |
| 17 | nfv | ⊢ Ⅎ 𝑤 ∃* 𝑦 𝑥 𝐴 𝑦 | |
| 18 | breq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) | |
| 19 | 18 | mobidv | ⊢ ( 𝑤 = 𝑥 → ( ∃* 𝑦 𝑤 𝐴 𝑦 ↔ ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |
| 20 | 16 17 19 | cbvalv1 | ⊢ ( ∀ 𝑤 ∃* 𝑦 𝑤 𝐴 𝑦 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) |
| 21 | 10 12 20 | 3bitr3ri | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ↔ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) |
| 22 | 21 | anbi2i | ⊢ ( ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ↔ ( Rel 𝐴 ∧ ∀ 𝑤 ∃ 𝑢 ∀ 𝑣 ( 𝑤 𝐴 𝑣 → 𝑣 = 𝑢 ) ) ) |
| 23 | 3 22 | bitr4i | ⊢ ( Fun 𝐴 ↔ ( Rel 𝐴 ∧ ∀ 𝑥 ∃* 𝑦 𝑥 𝐴 𝑦 ) ) |