This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dffun6f.1 | |- F/_ x A |
|
| dffun6f.2 | |- F/_ y A |
||
| Assertion | dffun6f | |- ( Fun A <-> ( Rel A /\ A. x E* y x A y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6f.1 | |- F/_ x A |
|
| 2 | dffun6f.2 | |- F/_ y A |
|
| 3 | dffun3 | |- ( Fun A <-> ( Rel A /\ A. w E. u A. v ( w A v -> v = u ) ) ) |
|
| 4 | nfcv | |- F/_ y w |
|
| 5 | nfcv | |- F/_ y v |
|
| 6 | 4 2 5 | nfbr | |- F/ y w A v |
| 7 | nfv | |- F/ v w A y |
|
| 8 | breq2 | |- ( v = y -> ( w A v <-> w A y ) ) |
|
| 9 | 6 7 8 | cbvmow | |- ( E* v w A v <-> E* y w A y ) |
| 10 | 9 | albii | |- ( A. w E* v w A v <-> A. w E* y w A y ) |
| 11 | df-mo | |- ( E* v w A v <-> E. u A. v ( w A v -> v = u ) ) |
|
| 12 | 11 | albii | |- ( A. w E* v w A v <-> A. w E. u A. v ( w A v -> v = u ) ) |
| 13 | nfcv | |- F/_ x w |
|
| 14 | nfcv | |- F/_ x y |
|
| 15 | 13 1 14 | nfbr | |- F/ x w A y |
| 16 | 15 | nfmov | |- F/ x E* y w A y |
| 17 | nfv | |- F/ w E* y x A y |
|
| 18 | breq1 | |- ( w = x -> ( w A y <-> x A y ) ) |
|
| 19 | 18 | mobidv | |- ( w = x -> ( E* y w A y <-> E* y x A y ) ) |
| 20 | 16 17 19 | cbvalv1 | |- ( A. w E* y w A y <-> A. x E* y x A y ) |
| 21 | 10 12 20 | 3bitr3ri | |- ( A. x E* y x A y <-> A. w E. u A. v ( w A v -> v = u ) ) |
| 22 | 21 | anbi2i | |- ( ( Rel A /\ A. x E* y x A y ) <-> ( Rel A /\ A. w E. u A. v ( w A v -> v = u ) ) ) |
| 23 | 3 22 | bitr4i | |- ( Fun A <-> ( Rel A /\ A. x E* y x A y ) ) |