This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr4 | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr3 | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
|
| 2 | df-pred | |- Pred ( R , x , y ) = ( x i^i ( `' R " { y } ) ) |
|
| 3 | 2 | eqeq1i | |- ( Pred ( R , x , y ) = (/) <-> ( x i^i ( `' R " { y } ) ) = (/) ) |
| 4 | 3 | rexbii | |- ( E. y e. x Pred ( R , x , y ) = (/) <-> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) |
| 5 | 4 | imbi2i | |- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 6 | 5 | albii | |- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 7 | 1 6 | bitr4i | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x Pred ( R , x , y ) = (/) ) ) |