This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeldisj4 | |- ( ElDisj A <-> A. x E* u e. A x e. u ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
| 2 | relres | |- Rel ( `' _E |` A ) |
|
| 3 | dfdisjALTV4 | |- ( Disj ( `' _E |` A ) <-> ( A. x E* u u ( `' _E |` A ) x /\ Rel ( `' _E |` A ) ) ) |
|
| 4 | 2 3 | mpbiran2 | |- ( Disj ( `' _E |` A ) <-> A. x E* u u ( `' _E |` A ) x ) |
| 5 | brcnvepres | |- ( ( u e. _V /\ x e. _V ) -> ( u ( `' _E |` A ) x <-> ( u e. A /\ x e. u ) ) ) |
|
| 6 | 5 | el2v | |- ( u ( `' _E |` A ) x <-> ( u e. A /\ x e. u ) ) |
| 7 | 6 | mobii | |- ( E* u u ( `' _E |` A ) x <-> E* u ( u e. A /\ x e. u ) ) |
| 8 | df-rmo | |- ( E* u e. A x e. u <-> E* u ( u e. A /\ x e. u ) ) |
|
| 9 | 7 8 | bitr4i | |- ( E* u u ( `' _E |` A ) x <-> E* u e. A x e. u ) |
| 10 | 9 | albii | |- ( A. x E* u u ( `' _E |` A ) x <-> A. x E* u e. A x e. u ) |
| 11 | 1 4 10 | 3bitri | |- ( ElDisj A <-> A. x E* u e. A x e. u ) |