This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of domain df-dm that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdm2 | ⊢ dom 𝐴 = ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco | ⊢ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ( ◡ 𝐴 ∘ ◡ ◡ 𝐴 ) | |
| 2 | cocnvcnv2 | ⊢ ( ◡ 𝐴 ∘ ◡ ◡ 𝐴 ) = ( ◡ 𝐴 ∘ 𝐴 ) | |
| 3 | 1 2 | eqtri | ⊢ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ( ◡ 𝐴 ∘ 𝐴 ) |
| 4 | 3 | unieqi | ⊢ ∪ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ∪ ( ◡ 𝐴 ∘ 𝐴 ) |
| 5 | 4 | unieqi | ⊢ ∪ ∪ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) |
| 6 | unidmrn | ⊢ ∪ ∪ ◡ ( ◡ 𝐴 ∘ 𝐴 ) = ( dom ( ◡ 𝐴 ∘ 𝐴 ) ∪ ran ( ◡ 𝐴 ∘ 𝐴 ) ) | |
| 7 | 5 6 | eqtr3i | ⊢ ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) = ( dom ( ◡ 𝐴 ∘ 𝐴 ) ∪ ran ( ◡ 𝐴 ∘ 𝐴 ) ) |
| 8 | df-rn | ⊢ ran 𝐴 = dom ◡ 𝐴 | |
| 9 | 8 | eqcomi | ⊢ dom ◡ 𝐴 = ran 𝐴 |
| 10 | dmcoeq | ⊢ ( dom ◡ 𝐴 = ran 𝐴 → dom ( ◡ 𝐴 ∘ 𝐴 ) = dom 𝐴 ) | |
| 11 | 9 10 | ax-mp | ⊢ dom ( ◡ 𝐴 ∘ 𝐴 ) = dom 𝐴 |
| 12 | rncoeq | ⊢ ( dom ◡ 𝐴 = ran 𝐴 → ran ( ◡ 𝐴 ∘ 𝐴 ) = ran ◡ 𝐴 ) | |
| 13 | 9 12 | ax-mp | ⊢ ran ( ◡ 𝐴 ∘ 𝐴 ) = ran ◡ 𝐴 |
| 14 | dfdm4 | ⊢ dom 𝐴 = ran ◡ 𝐴 | |
| 15 | 13 14 | eqtr4i | ⊢ ran ( ◡ 𝐴 ∘ 𝐴 ) = dom 𝐴 |
| 16 | 11 15 | uneq12i | ⊢ ( dom ( ◡ 𝐴 ∘ 𝐴 ) ∪ ran ( ◡ 𝐴 ∘ 𝐴 ) ) = ( dom 𝐴 ∪ dom 𝐴 ) |
| 17 | unidm | ⊢ ( dom 𝐴 ∪ dom 𝐴 ) = dom 𝐴 | |
| 18 | 7 16 17 | 3eqtrri | ⊢ dom 𝐴 = ∪ ∪ ( ◡ 𝐴 ∘ 𝐴 ) |