This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of domain df-dm that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdm2 | |- dom A = U. U. ( `' A o. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco | |- `' ( `' A o. A ) = ( `' A o. `' `' A ) |
|
| 2 | cocnvcnv2 | |- ( `' A o. `' `' A ) = ( `' A o. A ) |
|
| 3 | 1 2 | eqtri | |- `' ( `' A o. A ) = ( `' A o. A ) |
| 4 | 3 | unieqi | |- U. `' ( `' A o. A ) = U. ( `' A o. A ) |
| 5 | 4 | unieqi | |- U. U. `' ( `' A o. A ) = U. U. ( `' A o. A ) |
| 6 | unidmrn | |- U. U. `' ( `' A o. A ) = ( dom ( `' A o. A ) u. ran ( `' A o. A ) ) |
|
| 7 | 5 6 | eqtr3i | |- U. U. ( `' A o. A ) = ( dom ( `' A o. A ) u. ran ( `' A o. A ) ) |
| 8 | df-rn | |- ran A = dom `' A |
|
| 9 | 8 | eqcomi | |- dom `' A = ran A |
| 10 | dmcoeq | |- ( dom `' A = ran A -> dom ( `' A o. A ) = dom A ) |
|
| 11 | 9 10 | ax-mp | |- dom ( `' A o. A ) = dom A |
| 12 | rncoeq | |- ( dom `' A = ran A -> ran ( `' A o. A ) = ran `' A ) |
|
| 13 | 9 12 | ax-mp | |- ran ( `' A o. A ) = ran `' A |
| 14 | dfdm4 | |- dom A = ran `' A |
|
| 15 | 13 14 | eqtr4i | |- ran ( `' A o. A ) = dom A |
| 16 | 11 15 | uneq12i | |- ( dom ( `' A o. A ) u. ran ( `' A o. A ) ) = ( dom A u. dom A ) |
| 17 | unidm | |- ( dom A u. dom A ) = dom A |
|
| 18 | 7 16 17 | 3eqtrri | |- dom A = U. U. ( `' A o. A ) |