This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of a composition. (Contributed by NM, 19-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rncoeq | ⊢ ( dom 𝐴 = ran 𝐵 → ran ( 𝐴 ∘ 𝐵 ) = ran 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoeq | ⊢ ( dom ◡ 𝐵 = ran ◡ 𝐴 → dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) = dom ◡ 𝐴 ) | |
| 2 | eqcom | ⊢ ( dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴 ) | |
| 3 | df-rn | ⊢ ran 𝐵 = dom ◡ 𝐵 | |
| 4 | dfdm4 | ⊢ dom 𝐴 = ran ◡ 𝐴 | |
| 5 | 3 4 | eqeq12i | ⊢ ( ran 𝐵 = dom 𝐴 ↔ dom ◡ 𝐵 = ran ◡ 𝐴 ) |
| 6 | 2 5 | bitri | ⊢ ( dom 𝐴 = ran 𝐵 ↔ dom ◡ 𝐵 = ran ◡ 𝐴 ) |
| 7 | df-rn | ⊢ ran ( 𝐴 ∘ 𝐵 ) = dom ◡ ( 𝐴 ∘ 𝐵 ) | |
| 8 | cnvco | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) | |
| 9 | 8 | dmeqi | ⊢ dom ◡ ( 𝐴 ∘ 𝐵 ) = dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
| 10 | 7 9 | eqtri | ⊢ ran ( 𝐴 ∘ 𝐵 ) = dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) |
| 11 | df-rn | ⊢ ran 𝐴 = dom ◡ 𝐴 | |
| 12 | 10 11 | eqeq12i | ⊢ ( ran ( 𝐴 ∘ 𝐵 ) = ran 𝐴 ↔ dom ( ◡ 𝐵 ∘ ◡ 𝐴 ) = dom ◡ 𝐴 ) |
| 13 | 1 6 12 | 3imtr4i | ⊢ ( dom 𝐴 = ran 𝐵 → ran ( 𝐴 ∘ 𝐵 ) = ran 𝐴 ) |