This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfco2 | ⊢ ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( 𝐴 ∘ 𝐵 ) | |
| 2 | reliun | ⊢ ( Rel ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ V Rel ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) | |
| 3 | relxp | ⊢ Rel ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) | |
| 4 | 3 | a1i | ⊢ ( 𝑥 ∈ V → Rel ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
| 5 | 2 4 | mprgbir | ⊢ Rel ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) |
| 6 | opelco2g | ⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 ( 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ) ) | |
| 7 | 6 | el2v | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 ( 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ) |
| 8 | eliun | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ V 〈 𝑦 , 𝑧 〉 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) | |
| 9 | rexv | ⊢ ( ∃ 𝑥 ∈ V 〈 𝑦 , 𝑧 〉 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 〈 𝑦 , 𝑧 〉 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) | |
| 10 | opelxp | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ( 𝑦 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑥 } ) ) ) | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 11 12 | elimasn | ⊢ ( 𝑦 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝐵 ) |
| 14 | 11 12 | opelcnv | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝐵 ↔ 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ) |
| 15 | 13 14 | bitri | ⊢ ( 𝑦 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ↔ 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | 11 16 | elimasn | ⊢ ( 𝑧 ∈ ( 𝐴 “ { 𝑥 } ) ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) |
| 18 | 15 17 | anbi12i | ⊢ ( ( 𝑦 ∈ ( ◡ 𝐵 “ { 𝑥 } ) ∧ 𝑧 ∈ ( 𝐴 “ { 𝑥 } ) ) ↔ ( 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ) |
| 19 | 10 18 | bitri | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ( 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ) |
| 20 | 19 | exbii | ⊢ ( ∃ 𝑥 〈 𝑦 , 𝑧 〉 ∈ ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ↔ ∃ 𝑥 ( 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ) |
| 21 | 8 9 20 | 3bitrri | ⊢ ( ∃ 𝑥 ( 〈 𝑦 , 𝑥 〉 ∈ 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐴 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
| 22 | 7 21 | bitri | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) ) |
| 23 | 1 5 22 | eqrelriiv | ⊢ ( 𝐴 ∘ 𝐵 ) = ∪ 𝑥 ∈ V ( ( ◡ 𝐵 “ { 𝑥 } ) × ( 𝐴 “ { 𝑥 } ) ) |