This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfceil2 | ⊢ ⌈ = ( 𝑥 ∈ ℝ ↦ ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ceil | ⊢ ⌈ = ( 𝑥 ∈ ℝ ↦ - ( ⌊ ‘ - 𝑥 ) ) | |
| 2 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 3 | lenegcon2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑥 ≤ - 𝑧 ↔ 𝑧 ≤ - 𝑥 ) ) | |
| 4 | peano2re | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) | |
| 5 | 4 | anim1ci | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑧 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) ) |
| 6 | ltnegcon1 | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → ( - 𝑧 < ( 𝑥 + 1 ) ↔ - ( 𝑥 + 1 ) < 𝑧 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝑧 < ( 𝑥 + 1 ) ↔ - ( 𝑥 + 1 ) < 𝑧 ) ) |
| 8 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 9 | 1cnd | ⊢ ( 𝑥 ∈ ℝ → 1 ∈ ℂ ) | |
| 10 | 8 9 | negdid | ⊢ ( 𝑥 ∈ ℝ → - ( 𝑥 + 1 ) = ( - 𝑥 + - 1 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → - ( 𝑥 + 1 ) = ( - 𝑥 + - 1 ) ) |
| 12 | 11 | breq1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - ( 𝑥 + 1 ) < 𝑧 ↔ ( - 𝑥 + - 1 ) < 𝑧 ) ) |
| 13 | renegcl | ⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → - 𝑥 ∈ ℝ ) |
| 15 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 16 | 15 | a1i | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → - 1 ∈ ℝ ) |
| 17 | simpr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) | |
| 18 | 14 16 17 | ltaddsubd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( - 𝑥 + - 1 ) < 𝑧 ↔ - 𝑥 < ( 𝑧 − - 1 ) ) ) |
| 19 | recn | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) | |
| 20 | 1cnd | ⊢ ( 𝑧 ∈ ℝ → 1 ∈ ℂ ) | |
| 21 | 19 20 | subnegd | ⊢ ( 𝑧 ∈ ℝ → ( 𝑧 − - 1 ) = ( 𝑧 + 1 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑧 − - 1 ) = ( 𝑧 + 1 ) ) |
| 23 | 22 | breq2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝑥 < ( 𝑧 − - 1 ) ↔ - 𝑥 < ( 𝑧 + 1 ) ) ) |
| 24 | 18 23 | bitrd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( - 𝑥 + - 1 ) < 𝑧 ↔ - 𝑥 < ( 𝑧 + 1 ) ) ) |
| 25 | 7 12 24 | 3bitrd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝑧 < ( 𝑥 + 1 ) ↔ - 𝑥 < ( 𝑧 + 1 ) ) ) |
| 26 | 3 25 | anbi12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ↔ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 27 | 2 26 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ↔ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 28 | 27 | riotabidva | ⊢ ( 𝑥 ∈ ℝ → ( ℩ 𝑧 ∈ ℤ ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ) = ( ℩ 𝑧 ∈ ℤ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 29 | 28 | negeqd | ⊢ ( 𝑥 ∈ ℝ → - ( ℩ 𝑧 ∈ ℤ ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ) = - ( ℩ 𝑧 ∈ ℤ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 30 | zbtwnre | ⊢ ( 𝑥 ∈ ℝ → ∃! 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) | |
| 31 | breq2 | ⊢ ( 𝑦 = - 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ - 𝑧 ) ) | |
| 32 | breq1 | ⊢ ( 𝑦 = - 𝑧 → ( 𝑦 < ( 𝑥 + 1 ) ↔ - 𝑧 < ( 𝑥 + 1 ) ) ) | |
| 33 | 31 32 | anbi12d | ⊢ ( 𝑦 = - 𝑧 → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ↔ ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ) ) |
| 34 | 33 | zriotaneg | ⊢ ( ∃! 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) → ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) = - ( ℩ 𝑧 ∈ ℤ ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ) ) |
| 35 | 30 34 | syl | ⊢ ( 𝑥 ∈ ℝ → ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) = - ( ℩ 𝑧 ∈ ℤ ( 𝑥 ≤ - 𝑧 ∧ - 𝑧 < ( 𝑥 + 1 ) ) ) ) |
| 36 | flval | ⊢ ( - 𝑥 ∈ ℝ → ( ⌊ ‘ - 𝑥 ) = ( ℩ 𝑧 ∈ ℤ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) | |
| 37 | 13 36 | syl | ⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ - 𝑥 ) = ( ℩ 𝑧 ∈ ℤ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 38 | 37 | negeqd | ⊢ ( 𝑥 ∈ ℝ → - ( ⌊ ‘ - 𝑥 ) = - ( ℩ 𝑧 ∈ ℤ ( 𝑧 ≤ - 𝑥 ∧ - 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 39 | 29 35 38 | 3eqtr4rd | ⊢ ( 𝑥 ∈ ℝ → - ( ⌊ ‘ - 𝑥 ) = ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 40 | 39 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ ↦ - ( ⌊ ‘ - 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 41 | 1 40 | eqtri | ⊢ ⌈ = ( 𝑥 ∈ ℝ ↦ ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) ) |