This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceilval2 | ⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = ( ℩ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 ∧ 𝑦 < ( 𝐴 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≤ 𝑦 ↔ 𝐴 ≤ 𝑦 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 1 ) = ( 𝐴 + 1 ) ) | |
| 3 | 2 | breq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 < ( 𝑥 + 1 ) ↔ 𝑦 < ( 𝐴 + 1 ) ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ↔ ( 𝐴 ≤ 𝑦 ∧ 𝑦 < ( 𝐴 + 1 ) ) ) ) |
| 5 | 4 | riotabidv | ⊢ ( 𝑥 = 𝐴 → ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) = ( ℩ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 ∧ 𝑦 < ( 𝐴 + 1 ) ) ) ) |
| 6 | dfceil2 | ⊢ ⌈ = ( 𝑥 ∈ ℝ ↦ ( ℩ 𝑦 ∈ ℤ ( 𝑥 ≤ 𝑦 ∧ 𝑦 < ( 𝑥 + 1 ) ) ) ) | |
| 7 | riotaex | ⊢ ( ℩ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 ∧ 𝑦 < ( 𝐴 + 1 ) ) ) ∈ V | |
| 8 | 5 6 7 | fvmpt | ⊢ ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = ( ℩ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 ∧ 𝑦 < ( 𝐴 + 1 ) ) ) ) |