This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Choice equivalent: the VII-finite sets are the same as I-finite sets. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfacfin7 | |- ( CHOICE <-> Fin7 = Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn2 | |- ( ( _V \ dom card ) C_ Fin <-> ( Fin u. ( _V \ dom card ) ) = Fin ) |
|
| 2 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 3 | finnum | |- ( x e. Fin -> x e. dom card ) |
|
| 4 | 3 | ssriv | |- Fin C_ dom card |
| 5 | ssequn2 | |- ( Fin C_ dom card <-> ( dom card u. Fin ) = dom card ) |
|
| 6 | 4 5 | mpbi | |- ( dom card u. Fin ) = dom card |
| 7 | 6 | eqeq1i | |- ( ( dom card u. Fin ) = _V <-> dom card = _V ) |
| 8 | 2 7 | bitr4i | |- ( CHOICE <-> ( dom card u. Fin ) = _V ) |
| 9 | ssv | |- ( dom card u. Fin ) C_ _V |
|
| 10 | eqss | |- ( ( dom card u. Fin ) = _V <-> ( ( dom card u. Fin ) C_ _V /\ _V C_ ( dom card u. Fin ) ) ) |
|
| 11 | 9 10 | mpbiran | |- ( ( dom card u. Fin ) = _V <-> _V C_ ( dom card u. Fin ) ) |
| 12 | ssundif | |- ( _V C_ ( dom card u. Fin ) <-> ( _V \ dom card ) C_ Fin ) |
|
| 13 | 8 11 12 | 3bitri | |- ( CHOICE <-> ( _V \ dom card ) C_ Fin ) |
| 14 | dffin7-2 | |- Fin7 = ( Fin u. ( _V \ dom card ) ) |
|
| 15 | 14 | eqeq1i | |- ( Fin7 = Fin <-> ( Fin u. ( _V \ dom card ) ) = Fin ) |
| 16 | 1 13 15 | 3bitr4i | |- ( CHOICE <-> Fin7 = Fin ) |