This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac8a . If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac8alem.2 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| dfac8alem.3 | ⊢ 𝐺 = ( 𝑓 ∈ V ↦ ( 𝑔 ‘ ( 𝐴 ∖ ran 𝑓 ) ) ) | ||
| Assertion | dfac8alem | ⊢ ( 𝐴 ∈ 𝐶 → ( ∃ 𝑔 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → 𝐴 ∈ dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8alem.2 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | dfac8alem.3 | ⊢ 𝐺 = ( 𝑓 ∈ V ↦ ( 𝑔 ‘ ( 𝐴 ∖ ran 𝑓 ) ) ) | |
| 3 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 4 | difss | ⊢ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐴 | |
| 5 | elpw2g | ⊢ ( 𝐴 ∈ V → ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐴 ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ∈ 𝒫 𝐴 ) |
| 7 | neeq1 | ⊢ ( 𝑦 = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( 𝑦 ≠ ∅ ↔ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) ) | |
| 8 | fveq2 | ⊢ ( 𝑦 = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) | |
| 9 | id | ⊢ ( 𝑦 = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → 𝑦 = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) | |
| 10 | 8 9 | eleq12d | ⊢ ( 𝑦 = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 11 | 7 10 | imbi12d | ⊢ ( 𝑦 = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) → ( ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ↔ ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 12 | 11 | rspcv | ⊢ ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ∈ 𝒫 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 13 | 6 12 | syl | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 14 | 13 | 3imp | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) → ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) |
| 15 | 1 | tfr2 | ⊢ ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 16 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 17 | fnfun | ⊢ ( 𝐹 Fn On → Fun 𝐹 ) | |
| 18 | 16 17 | ax-mp | ⊢ Fun 𝐹 |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | resfunexg | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ V ) → ( 𝐹 ↾ 𝑥 ) ∈ V ) | |
| 21 | 18 19 20 | mp2an | ⊢ ( 𝐹 ↾ 𝑥 ) ∈ V |
| 22 | rneq | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ran 𝑓 = ran ( 𝐹 ↾ 𝑥 ) ) | |
| 23 | df-ima | ⊢ ( 𝐹 “ 𝑥 ) = ran ( 𝐹 ↾ 𝑥 ) | |
| 24 | 22 23 | eqtr4di | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ran 𝑓 = ( 𝐹 “ 𝑥 ) ) |
| 25 | 24 | difeq2d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝐴 ∖ ran 𝑓 ) = ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑔 ‘ ( 𝐴 ∖ ran 𝑓 ) ) = ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 27 | fvex | ⊢ ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ V | |
| 28 | 26 2 27 | fvmpt | ⊢ ( ( 𝐹 ↾ 𝑥 ) ∈ V → ( 𝐺 ‘ ( 𝐹 ↾ 𝑥 ) ) = ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 29 | 21 28 | ax-mp | ⊢ ( 𝐺 ‘ ( 𝐹 ↾ 𝑥 ) ) = ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) |
| 30 | 15 29 | eqtrdi | ⊢ ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) = ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 31 | 30 | eleq1d | ⊢ ( 𝑥 ∈ On → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ↔ ( 𝑔 ‘ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 32 | 14 31 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ∧ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) → ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 33 | 32 | 3expia | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 34 | 33 | com23 | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( 𝑥 ∈ On → ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 35 | 34 | ralrimiv | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) ) → ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) |
| 36 | 35 | ex | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) ) |
| 37 | 16 | tz7.49c | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) ) → ∃ 𝑥 ∈ On ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 ) |
| 38 | 37 | ex | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) → ∃ 𝑥 ∈ On ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 ) ) |
| 39 | 19 | f1oen | ⊢ ( ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → 𝑥 ≈ 𝐴 ) |
| 40 | isnumi | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ≈ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 41 | 39 40 | sylan2 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 ) → 𝐴 ∈ dom card ) |
| 42 | 41 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ On ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ 𝐴 → 𝐴 ∈ dom card ) |
| 43 | 38 42 | syl6 | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ∈ On ( ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ≠ ∅ → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 ∖ ( 𝐹 “ 𝑥 ) ) ) → 𝐴 ∈ dom card ) ) |
| 44 | 36 43 | syld | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → 𝐴 ∈ dom card ) ) |
| 45 | 3 44 | syl | ⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → 𝐴 ∈ dom card ) ) |
| 46 | 45 | exlimdv | ⊢ ( 𝐴 ∈ 𝐶 → ( ∃ 𝑔 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑦 ≠ ∅ → ( 𝑔 ‘ 𝑦 ) ∈ 𝑦 ) → 𝐴 ∈ dom card ) ) |