This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac8a . If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997) (Revised by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfac8alem.2 | |- F = recs ( G ) |
|
| dfac8alem.3 | |- G = ( f e. _V |-> ( g ` ( A \ ran f ) ) ) |
||
| Assertion | dfac8alem | |- ( A e. C -> ( E. g A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8alem.2 | |- F = recs ( G ) |
|
| 2 | dfac8alem.3 | |- G = ( f e. _V |-> ( g ` ( A \ ran f ) ) ) |
|
| 3 | elex | |- ( A e. C -> A e. _V ) |
|
| 4 | difss | |- ( A \ ( F " x ) ) C_ A |
|
| 5 | elpw2g | |- ( A e. _V -> ( ( A \ ( F " x ) ) e. ~P A <-> ( A \ ( F " x ) ) C_ A ) ) |
|
| 6 | 4 5 | mpbiri | |- ( A e. _V -> ( A \ ( F " x ) ) e. ~P A ) |
| 7 | neeq1 | |- ( y = ( A \ ( F " x ) ) -> ( y =/= (/) <-> ( A \ ( F " x ) ) =/= (/) ) ) |
|
| 8 | fveq2 | |- ( y = ( A \ ( F " x ) ) -> ( g ` y ) = ( g ` ( A \ ( F " x ) ) ) ) |
|
| 9 | id | |- ( y = ( A \ ( F " x ) ) -> y = ( A \ ( F " x ) ) ) |
|
| 10 | 8 9 | eleq12d | |- ( y = ( A \ ( F " x ) ) -> ( ( g ` y ) e. y <-> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 11 | 7 10 | imbi12d | |- ( y = ( A \ ( F " x ) ) -> ( ( y =/= (/) -> ( g ` y ) e. y ) <-> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 12 | 11 | rspcv | |- ( ( A \ ( F " x ) ) e. ~P A -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 13 | 6 12 | syl | |- ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) ) |
| 14 | 13 | 3imp | |- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) |
| 15 | 1 | tfr2 | |- ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) |
| 16 | 1 | tfr1 | |- F Fn On |
| 17 | fnfun | |- ( F Fn On -> Fun F ) |
|
| 18 | 16 17 | ax-mp | |- Fun F |
| 19 | vex | |- x e. _V |
|
| 20 | resfunexg | |- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
|
| 21 | 18 19 20 | mp2an | |- ( F |` x ) e. _V |
| 22 | rneq | |- ( f = ( F |` x ) -> ran f = ran ( F |` x ) ) |
|
| 23 | df-ima | |- ( F " x ) = ran ( F |` x ) |
|
| 24 | 22 23 | eqtr4di | |- ( f = ( F |` x ) -> ran f = ( F " x ) ) |
| 25 | 24 | difeq2d | |- ( f = ( F |` x ) -> ( A \ ran f ) = ( A \ ( F " x ) ) ) |
| 26 | 25 | fveq2d | |- ( f = ( F |` x ) -> ( g ` ( A \ ran f ) ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 27 | fvex | |- ( g ` ( A \ ( F " x ) ) ) e. _V |
|
| 28 | 26 2 27 | fvmpt | |- ( ( F |` x ) e. _V -> ( G ` ( F |` x ) ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 29 | 21 28 | ax-mp | |- ( G ` ( F |` x ) ) = ( g ` ( A \ ( F " x ) ) ) |
| 30 | 15 29 | eqtrdi | |- ( x e. On -> ( F ` x ) = ( g ` ( A \ ( F " x ) ) ) ) |
| 31 | 30 | eleq1d | |- ( x e. On -> ( ( F ` x ) e. ( A \ ( F " x ) ) <-> ( g ` ( A \ ( F " x ) ) ) e. ( A \ ( F " x ) ) ) ) |
| 32 | 14 31 | syl5ibrcom | |- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) /\ ( A \ ( F " x ) ) =/= (/) ) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 33 | 32 | 3expia | |- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> ( ( A \ ( F " x ) ) =/= (/) -> ( x e. On -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) |
| 34 | 33 | com23 | |- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> ( x e. On -> ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) |
| 35 | 34 | ralrimiv | |- ( ( A e. _V /\ A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) ) -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
| 36 | 35 | ex | |- ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) ) |
| 37 | 16 | tz7.49c | |- ( ( A e. _V /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| 38 | 37 | ex | |- ( A e. _V -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) ) |
| 39 | 19 | f1oen | |- ( ( F |` x ) : x -1-1-onto-> A -> x ~~ A ) |
| 40 | isnumi | |- ( ( x e. On /\ x ~~ A ) -> A e. dom card ) |
|
| 41 | 39 40 | sylan2 | |- ( ( x e. On /\ ( F |` x ) : x -1-1-onto-> A ) -> A e. dom card ) |
| 42 | 41 | rexlimiva | |- ( E. x e. On ( F |` x ) : x -1-1-onto-> A -> A e. dom card ) |
| 43 | 38 42 | syl6 | |- ( A e. _V -> ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) -> A e. dom card ) ) |
| 44 | 36 43 | syld | |- ( A e. _V -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |
| 45 | 3 44 | syl | |- ( A e. C -> ( A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |
| 46 | 45 | exlimdv | |- ( A e. C -> ( E. g A. y e. ~P A ( y =/= (/) -> ( g ` y ) e. y ) -> A e. dom card ) ) |