This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun ) whereas the analogue for Grothendieck universes requires ax-groth (see grothtsk ). (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wun | ⊢ WUni = { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwun | ⊢ WUni | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | 1 | cv | ⊢ 𝑢 |
| 3 | 2 | wtr | ⊢ Tr 𝑢 |
| 4 | c0 | ⊢ ∅ | |
| 5 | 2 4 | wne | ⊢ 𝑢 ≠ ∅ |
| 6 | vx | ⊢ 𝑥 | |
| 7 | 6 | cv | ⊢ 𝑥 |
| 8 | 7 | cuni | ⊢ ∪ 𝑥 |
| 9 | 8 2 | wcel | ⊢ ∪ 𝑥 ∈ 𝑢 |
| 10 | 7 | cpw | ⊢ 𝒫 𝑥 |
| 11 | 10 2 | wcel | ⊢ 𝒫 𝑥 ∈ 𝑢 |
| 12 | vy | ⊢ 𝑦 | |
| 13 | 12 | cv | ⊢ 𝑦 |
| 14 | 7 13 | cpr | ⊢ { 𝑥 , 𝑦 } |
| 15 | 14 2 | wcel | ⊢ { 𝑥 , 𝑦 } ∈ 𝑢 |
| 16 | 15 12 2 | wral | ⊢ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 |
| 17 | 9 11 16 | w3a | ⊢ ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
| 18 | 17 6 2 | wral | ⊢ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
| 19 | 3 5 18 | w3a | ⊢ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) |
| 20 | 19 1 | cab | ⊢ { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } |
| 21 | 0 20 | wceq | ⊢ WUni = { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } |