This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun ) whereas the analogue for Grothendieck universes requires ax-groth (see grothtsk ). (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wun | |- WUni = { u | ( Tr u /\ u =/= (/) /\ A. x e. u ( U. x e. u /\ ~P x e. u /\ A. y e. u { x , y } e. u ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwun | |- WUni |
|
| 1 | vu | |- u |
|
| 2 | 1 | cv | |- u |
| 3 | 2 | wtr | |- Tr u |
| 4 | c0 | |- (/) |
|
| 5 | 2 4 | wne | |- u =/= (/) |
| 6 | vx | |- x |
|
| 7 | 6 | cv | |- x |
| 8 | 7 | cuni | |- U. x |
| 9 | 8 2 | wcel | |- U. x e. u |
| 10 | 7 | cpw | |- ~P x |
| 11 | 10 2 | wcel | |- ~P x e. u |
| 12 | vy | |- y |
|
| 13 | 12 | cv | |- y |
| 14 | 7 13 | cpr | |- { x , y } |
| 15 | 14 2 | wcel | |- { x , y } e. u |
| 16 | 15 12 2 | wral | |- A. y e. u { x , y } e. u |
| 17 | 9 11 16 | w3a | |- ( U. x e. u /\ ~P x e. u /\ A. y e. u { x , y } e. u ) |
| 18 | 17 6 2 | wral | |- A. x e. u ( U. x e. u /\ ~P x e. u /\ A. y e. u { x , y } e. u ) |
| 19 | 3 5 18 | w3a | |- ( Tr u /\ u =/= (/) /\ A. x e. u ( U. x e. u /\ ~P x e. u /\ A. y e. u { x , y } e. u ) ) |
| 20 | 19 1 | cab | |- { u | ( Tr u /\ u =/= (/) /\ A. x e. u ( U. x e. u /\ ~P x e. u /\ A. y e. u { x , y } e. u ) ) } |
| 21 | 0 20 | wceq | |- WUni = { u | ( Tr u /\ u =/= (/) /\ A. x e. u ( U. x e. u /\ ~P x e. u /\ A. y e. u { x , y } e. u ) ) } |